1
|
Álvarez Freile J, Bremer E. A Luminescence-Based Method for In Vitro Screening of Immunomodulatory Checkpoints and Therapeutics. Methods Mol Biol 2025; 2930:245-257. [PMID: 40402459 DOI: 10.1007/978-1-0716-4558-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Early insight into the strength of antigen-specific T cell immune responses is an important aspect for the screening and development of novel immunotherapies, including immune checkpoint inhibitors. Here, we describe a simple, rapid, and cost-effective luminescence-based protocol for the assessment of antigen-specific T cell responses in vitro. This method makes use of genetically engineered Jurkat reporter cells expressing a high-affinity T cell receptor (TCR) toward a commercially available human papillomavirus 16 E7 peptide (E7-TCR), in which luciferase activity is coupled to activation of the promoter of the Nuclear Factor of Activated T Cells (NFAT) transcription factor. With this method, luminescence is generated and can be detected within 6 h only upon antigen-specific activation of the E7-TCR transgenic Jurkat cells with cognate E7 antigenic peptide. This method can be easily modified to study the impact of potential co-stimulatory and immunosuppressive molecules that may be present within the tumor microenvironment (TME) and to monitor the impact of antagonistic antibody treatment on abrogating immunosuppression. We believe this method can be further exploited as valuable tool to study factors that may affect T cell immunity in the immunosuppressive TME and the impact of molecules, cytokines, or therapeutics in triggering effective antigen-specific T cell responses.
Collapse
Affiliation(s)
| | - Edwin Bremer
- University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G, Bremer E. A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics. Front Immunol 2023; 14:1233113. [PMID: 37559730 PMCID: PMC10407562 DOI: 10.3389/fimmu.2023.1233113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Li H, Wang YG, Ma ZC, Yun-Hang G, Ling S, Teng-Fei C, Guang-Ping Z, Gao Y. A high-throughput cell-based gaussia luciferase reporter assay for measurement of CYP1A1, CYP2B6, and CYP3A4 induction. Xenobiotica 2021; 51:752-763. [PMID: 33896369 DOI: 10.1080/00498254.2021.1918800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Gao Yun-Hang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Ling
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Teng-Fei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Guang-Ping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Iwado S, Abe S, Oshimura M, Kazuki Y, Nakajima Y. Bioluminescence Measurement of Time-Dependent Dynamic Changes of CYP-Mediated Cytotoxicity in CYP-Expressing Luminescent HepG2 Cells. Int J Mol Sci 2021; 22:ijms22062843. [PMID: 33799598 PMCID: PMC7999318 DOI: 10.3390/ijms22062843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
We sought to develop a cell-based cytotoxicity assay using human hepatocytes, which reflect the effects of drug-metabolizing enzymes on cytotoxicity. In this study, we generated luminescent human hepatoblastoma HepG2 cells using the mouse artificial chromosome vector, in which click beetle luciferase alone or luciferase and major drug-metabolizing enzymes (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are expressed, and monitored the time-dependent changes of CYP-mediated cytotoxicity expression by bioluminescence measurement. Real-time bioluminescence measurement revealed that compared with CYP-non-expressing cells, the luminescence intensity of CYP-expressing cells rapidly decreased when the cells were treated with low concentrations of aflatoxin B1 or primaquine, which exhibits cytotoxicity in the presence of CYP3A4 or CYP2D6, respectively. Using kinetics data obtained by the real-time bioluminescence measurement, we estimated the time-dependent changes of 50% inhibitory concentration (IC50) values in the aflatoxin B1- and primaquine-treated cell lines. The first IC50 value was detected much earlier and at a lower concentration in primaquine-treated CYP-expressing HepG2 cells than in primaquine-treated CYP-non-expressing cells, and the decrease of IC50 values was much faster in the former than the latter. Thus, we successfully monitored time- and concentration-dependent dynamic changes of CYP-mediated cytotoxicity expression in CYP-expressing luminescent HepG2 cells by means of real-time bioluminescence measurement.
Collapse
Affiliation(s)
- Satoru Iwado
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan
- Correspondence: (Y.K.); (Y.N.); Tel.: +81-859-38-6219 (Y.K.); +81-87-869-3525 (Y.N.)
| | - Yoshihiro Nakajima
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
- Correspondence: (Y.K.); (Y.N.); Tel.: +81-859-38-6219 (Y.K.); +81-87-869-3525 (Y.N.)
| |
Collapse
|
5
|
Hayek S, Bekaddour N, Besson L, Alves de Sousa R, Pietrancosta N, Viel S, Smith N, Jacob Y, Nisole S, Mandal R, Wishart DS, Walzer T, Herbeuval JP, Vidalain PO. Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS DISCOVERY 2018; 24:25-37. [PMID: 30184441 DOI: 10.1177/2472555218797078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.
Collapse
Affiliation(s)
- Simon Hayek
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nassima Bekaddour
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Laurie Besson
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Rodolphe Alves de Sousa
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nicolas Pietrancosta
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Sébastien Viel
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Nikaia Smith
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Yves Jacob
- 4 CNRS, UMR3569, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Sébastien Nisole
- 5 Institut de Recherche en Infectiologie de Montpellier, CNRS, UMR9004, Université de Montpellier, Montpellier, France
| | - Rupasri Mandal
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Thierry Walzer
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Jean-Philippe Herbeuval
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| |
Collapse
|
6
|
Uno K, Murotomi K, Kazuki Y, Oshimura M, Nakajima Y. Bioluminescence-based cytotoxicity assay for simultaneous evaluation of cell viability and membrane damage in human hepatoma HepG2 cells. LUMINESCENCE 2018; 33:616-624. [PMID: 29424036 DOI: 10.1002/bio.3454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules.
Collapse
Affiliation(s)
- Katsuhiro Uno
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Yoshihiro Nakajima
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| |
Collapse
|
7
|
Gaur S, Bhargava-Shah A, Hori S, Afjei R, Sekar TV, Gambhir SS, Massoud TF, Paulmurugan R. Engineering Intracellularly Retained Gaussia Luciferase Reporters for Improved Biosensing and Molecular Imaging Applications. ACS Chem Biol 2017; 12:2345-2353. [PMID: 28767220 DOI: 10.1021/acschembio.7b00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gaussia luciferase (GLUC) is a bioluminescent reporter protein of increasing importance. As a secretory protein, it has increased sensitivity in vitro and in vivo (∼20 000-fold, and ∼1000-fold, respectively) over its competitor, secreted alkaline phosphatase. Unfortunately, this same advantageous secretory nature of GLUC limits its usefulness for many other possible intracellular applications, e.g., imaging signaling pathways in intact cells, in vivo imaging, and in developing molecular imaging biosensors to study protein-protein interactions and protein folding. Hence, to widen the research applications of GLUC, we developed engineered variants that increase its intracellular retention both by modifying the N-terminal secretory signal peptide and by tagging additional sequences to its C-terminal region. We found that when GLUC was expressed in mammalian cells, its N-terminal secretory signal peptide comprising amino acids 1-16 was essential for GLUC folding and functional activity in addition to its inherent secretory property. Modification of the C-terminus of GLUC by tagging a four amino acid (KDEL) endoplasmic reticulum targeting peptide in multiple repeats significantly improved its intracellular retention, with little impact on its folding and enzymatic activity. We used stable cells expressing this engineered GLUC with KDEL repeats to monitor chemically induced endoplasmic reticulum stress on cells. Additionally, we engineered an apoptotic sensor using modified variants of GLUC containing a four amino acid caspase substrate peptide (DEVD) between the GLUC protein and the KDEL repeats. Its use in cell culture resulted in increased GLUC secretion in the growth medium when cells were treated with the chemotherapeutic drugs doxorubicin, paclitaxel, and carboplatin. We thus successfully engineered a new variant GLUC protein that is retained inside cells rather than secreted extracellularly. We validated this novel reporter by incorporating it in biosensors for detection of cellular endoplasmic reticulum stress and caspase activation. This new molecularly engineered enzymatic reporter has the potential for widespread applications in biological research.
Collapse
Affiliation(s)
- Shuchi Gaur
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Aarohi Bhargava-Shah
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Sharon Hori
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Rayhaneh Afjei
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Thillai V. Sekar
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Sanjiv S. Gambhir
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Tarik F. Massoud
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| | - Ramasamy Paulmurugan
- Departments of Radiology,
and Bioengineering, the Bio-X Program, Molecular Imaging Program at
Stanford (MIPS), Stanford University School of Medicine, 3155 Porter
Drive, Palo Alto, California 94304-1110, United States
| |
Collapse
|