1
|
EFSA Panel on Plant Health (PLH), Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Grégoire J, Malumphy C, Antonatos S, Kertesz V, Papachristos D, Sfyra O, MacLeod A. Pest categorisation of Crisicoccus seruratus. EFSA J 2024; 22:e8740. [PMID: 38650611 PMCID: PMC11033835 DOI: 10.2903/j.efsa.2024.8740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Following the commodity risk assessments of Acer palmatum plants grafted on A. davidii from China, in which Crisicoccus matsumotoi (Hemiptera: Pseudococcidae) was identified as a pest of possible concern, the European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of C. matsumotoi for the territory of the European Union. Recent taxonomic revision of the genus Crisisoccus concluded that C. matsumotoi is a synonym of C. seruratus; therefore, the categorisation will use the current valid name C. seruratus. It is an insect pest native to Japan, feeding on species in 13 plant families. There are reports of its presence also in China and the Republic of Korea, but there is great uncertainty about the identity of the species for these records. Therefore, there is uncertainty about the species referred to as C. matsumotoi in the commodity risk assessments of A. palmatum. C. seruratus is a multivoltine species. It has three generations per year and overwinters as a nymph. The most important crops that may be affected by C. seruratus are figs (Ficus carica), grapes (Vitis spp.), nashi pears (Pyrus pyrifolia var. culta), persimmons (Diospyros kaki) and walnuts (Juglans regia). Plants for planting and fruits provide potential pathways for entry into the EU. Host availability and climate suitability suggest that the central, northern and some areas of southern EU countries would be suitable for the establishment of C. seruratus. The introduction of this mealybug would likely have an economic impact in the EU through yield reduction and fruit downgrading because of honeydew deposition and the consequent growth of sooty moulds. This insect is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and spread of this species into the EU. C. seruratus satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
2
|
Ballesteros C, Chorbadjian RA, Zaviezo T. Mating behavior of Pseudococcus calceolariae and Pseudococcus longispinus (Hemiptera: Pseudococcidae): are asexual reproduction and hybridization possible? JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:17. [PMID: 37565770 PMCID: PMC10416559 DOI: 10.1093/jisesa/iead058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/09/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
The study of insect reproduction is important from both basic and applied perspectives, particularly in mealybugs (Hemiptera: Pseudococcidae), because of the diversity of reproduction modes and also because they are important agricultural pests. Sex pheromone control strategies are currently being developed for many species. Pseudococcus calceolariae (Maskell) and Pseudococcus longispinus (Targioni Tozzetti) are closely related species that often coexist in the same host plant. In this study, mating behavior, the possible occurrence of asexual reproduction, and hybridization between them were investigated. We confirmed that both species did not show asexual reproduction and required the presence of a male to reproduce. When couples of the same species were put together, males had a highly stereotyped mating behavior, and females showed an active role in mating success by accepting or rejecting males with abdominal movements. In hybridization trials, no progeny was obtained for any of the interspecific combinations. Moreover, in interspecific pairs, males mainly moved randomly in the arena without direct contact with females and females showed no willingness to mate, escape, or not move in the presence of the male. Therefore, courtship and copulation success in both species were directly related to the specificity of the mating pair and, there was no evidence of hybridization. This information is useful for the understanding of reproduction in this family and supports the development of management techniques based on sex pheromones to disrupt reproduction or to monitor these mealybug species populations.
Collapse
Affiliation(s)
- Carolina Ballesteros
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Rodrigo A Chorbadjian
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Tania Zaviezo
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
3
|
Morgan-Richards M, Langton-Myers SS, Trewick SA. Loss and gain of sexual reproduction in the same stick insect. Mol Ecol 2019; 28:3929-3941. [PMID: 31386772 PMCID: PMC6852293 DOI: 10.1111/mec.15203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023]
Abstract
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.
Collapse
Affiliation(s)
| | | | - Steven A Trewick
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Paczesniak D, Klappert K, Kopp K, Neiman M, Seppälä K, Lively CM, Jokela J. Parasite resistance predicts fitness better than fecundity in a natural population of the freshwater snail
Potamopyrgus antipodarum. Evolution 2019; 73:1634-1646. [DOI: 10.1111/evo.13768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dorota Paczesniak
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
- Global Institute for Food Security University of Saskatchewan Saskatoon Canada
| | - Kirsten Klappert
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| | - Kirstin Kopp
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
- Velux Stiftung Zürich Switzerland
| | - Maurine Neiman
- Department of Biology University of Iowa Iowa City Iowa 52245
| | - Katri Seppälä
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| | - Curtis M. Lively
- Department of Biology Indiana University Bloomington Indiana 47405
| | - Jukka Jokela
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| |
Collapse
|
5
|
Tabata J, Ichiki RT, Moromizato C, Mori K. Sex pheromone of a coccoid insect with sexual and asexual lineages: fate of an ancestrally essential sexual signal in parthenogenetic females. J R Soc Interface 2017; 14:rsif.2017.0027. [PMID: 28250102 DOI: 10.1098/rsif.2017.0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Sex pheromones play a central role in intersexual communication for reproduction in many organisms. Particularly in insects, reproductive isolation that leads to speciation is often achieved by shifts of pheromone chemistries. However, the divergence and evolution of pheromones remain largely unknown. This study reveals a unique evolutionary consequence for terpenoid pheromones in coccoid insects. Coccoids, such as mealybugs, show clear sexual dimorphism: males are dwarf and short-lived, whereas females are wingless and almost immobile. Female pheromones are therefore indispensable for males to navigate for sexual reproduction, but some females can reproduce asexually. Interestingly, a derived asexual lineage that reproduces by parthenogenesis coexists with its ancestral lineage that reproduces sexually in a population of the pineapple mealybug, Dysmicoccus brevipes Here, we isolated, characterized and synthesized a novel monoterpene, (-)-(anti-1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde, as a pheromone of the sexual females of Dbrevipes This monoterpene aldehyde, with an irregular linkage of isoprene units, is notable, because all mealybug pheromones previously reported are carboxylic esters of terpenols. This compound was, however, never produced by the asexual females. As a consequence of acquiring parthenogenetic reproduction, the asexual females appear to have abandoned the production of the sex pheromone, which had been essential to attracting males in their ancestors.
Collapse
Affiliation(s)
- Jun Tabata
- Division of Applied Entomology and Zoology, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba-city, Ibaraki 305-8604, Japan
| | - Ryoko T Ichiki
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba-city, Ibaraki 305-8686, Japan
| | - Chie Moromizato
- Nago Branch Fruit Tree Section, Okinawa Prefectural Agricultural Research Center, 4605-3 Nago, Nago-city, Okinawa 905-0012, Japan
| | - Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co. Ltd., 4-2-1 Wakahagi, Inzai-city, Chiba 270-1609, Japan
| |
Collapse
|
6
|
Sex Pheromone of the Cotton Mealybug, Phenacoccus solenopsis, with an Unusual Cyclobutane Structure. J Chem Ecol 2016; 42:1193-1200. [PMID: 27771797 DOI: 10.1007/s10886-016-0783-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
The cotton mealybug, Phenacoccus solenopsis, the distribution of which was formerly limited to Nearctic and Neotropical regions, recently invaded many countries in various regions including Asia, Africa, and the Pacific. More recently, P. solenopsis was newly recorded in Japan and is currently an emerging pest of agricultural crops. In this study, we determined the structure of a sex pheromone of P. solenopsis in order to develop an effective lure for monitoring this pest. From volatiles emitted by virgin adult females, we isolated a compound attractive to males. By means of coupled gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified this as (2,2-dimethyl-3-isopropylidenecyclobutyl)methyl 3-methylbut-2-enoate. This compound was synthesized and shown to be attractive to male P. solenopsis. Analysis by gas chromatography using an enantioselective stationary phase and polarimetry analyses of the natural pheromone and synthetic enantiomers showed the natural compound to be the (R)-(-)-enantiomer. This compound is an ester of maconelliol, which has an unusual cyclobutane structure found in sex pheromones of other mealybug species, and senecioic acid, also found in the pheromones of other mealybug species. However, this is the first example of the ester of maconelliol and senecioic acid as a natural product.
Collapse
|
7
|
Mori K. Pheromone synthesis. Part 260: Synthesis of (±)-(anti-1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde, the racemate of the female-produced sex pheromone of the pineapple mealybug (Dysmicoccus brevipes), and its syn-isomer. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|