1
|
Esmail SM, Omar GE, Mourad AMI. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance ( Puccinia striiformis f. sp. tritici) Induced in Wheat ( Triticum aestivum) by Trichoderma asperellum T34. PLANT DISEASE 2023; 107:457-472. [PMID: 36449539 DOI: 10.1094/pdis-07-22-1593-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat stripe rust (caused by Puccinia striiformis f. tritici Erikss.) causes severe yield losses worldwide. Due to the continuous appearance of new stripe rust races, resistance has been broken in most of the highly resistant genotypes in Egypt and worldwide. Therefore, looking for new ways to resist such a severe disease is urgently needed. Trichoderma asperellum strain T34 has been known as an effective bioagent against many crop diseases. It exists naturally in Egyptian fields. Therefore, in our study, the effectiveness of strain T34 was tested as a bioagent against wheat stripe rust. For this purpose, 198 spring wheat genotypes were tested for their resistance against two different P. striiformis f. tritici populations collected from the Egyptian fields. The most highly aggressive P. striiformis f. tritici population was used to test the effectiveness of strain T34. Highly significant differences were found between strain T34 and stripe rust, suggesting the effectiveness of strain T34 in stripe rust resistance. A genome-wide association study identified 48 gene models controlling resistance under normal conditions and 46 gene models controlling strain T34-induced resistance. Of these gene models, only one common gene model was found, suggesting the presence of two different genetic systems controlling resistance under each condition. The pathways of the biological processes were investigated under both conditions. This study provided in-depth understanding of genetic control and, hence, will accelerate the future of wheat breeding programs for stripe rust resistance.
Collapse
Affiliation(s)
- Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Jambuthenne DT, Riaz A, Athiyannan N, Alahmad S, Ng WL, Ziems L, Afanasenko O, Periyannan SK, Aitken E, Platz G, Godwin I, Voss-Fels KP, Dinglasan E, Hickey LT. Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1355-1373. [PMID: 35113190 PMCID: PMC9033734 DOI: 10.1007/s00122-022-04037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.
Collapse
Affiliation(s)
- Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Naveenkumar Athiyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Wei Ling Ng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Laura Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Olga Afanasenko
- Department of Plant Resistance To Diseases, All Russian Research Institute for Plant Protection, St Petersburg, Russia, 196608
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Elizabeth Aitken
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
3
|
Rauf Y, Bajgain P, Rouse MN, Khanzada KA, Bhavani S, Huerta-Espino J, Singh RP, Imtiaz M, Anderson JA. Molecular Characterization of Genomic Regions for Adult Plant Resistance to Stem Rust in a Spring Wheat Mapping Population. PLANT DISEASE 2022; 106:439-450. [PMID: 34353123 DOI: 10.1094/pdis-03-21-0672-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adult plant resistance (APR) to wheat stem rust has been one of the approaches for resistance breeding since the evolution of the Ug99 race group and other races. This study was conducted to dissect and understand the genetic basis of APR to stem rust in spring wheat line 'Copio'. A total of 176 recombinant inbred lines (RILs) from the cross of susceptible parent 'Apav' with Copio were phenotyped for stem rust resistance in six environments. Composite interval mapping using 762 genotyping-by-sequencing markers identified 16 genomic regions conferring stem rust resistance. Assays with gene-linked molecular markers revealed that Copio carried known APR genes Sr2 and Lr46/Yr29/Sr58 in addition to the 2NS/2AS translocation that harbors race-specific genes Sr38, Lr37, and Yr17. Three quantitative trait loci (QTLs) were mapped on chromosomes 2B, two QTLs on chromosomes 3A, 3B, and 6A each, and one QTL on each of chromosomes 2A, 1B, 2D, 4B, 5D, 6D, and 7A. The QTL QSr.umn.5D is potentially a new resistance gene and contributed to quantitative resistance in Copio. The RILs with allelic combinations of Sr2, Sr38, and Sr58 had 27 to 39% less stem rust coefficient of infection in all field environments compared with RILs with none of these genes, and this gene combination was most effective in the U.S. environments. We conclude that Copio carries several genes that provide both race-specific and non-race-specific resistance to diverse races of stem rust fungus and can be used by breeding programs in pyramiding other effective genes to develop durable resistance in wheat.
Collapse
Affiliation(s)
- Yahya Rauf
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Matthew N Rouse
- Cereal Disease Lab, United States Department of Agriculture, St. Paul, MN 55108, U.S.A
| | - Khalil A Khanzada
- Cereal Disease Research Institute, Pakistan Agricultural Research Council, University of Karachi 75270, Pakistan
| | - Sridhar Bhavani
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Julio Huerta-Espino
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Ravi P Singh
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Muhammad Imtiaz
- Global Wheat Program, International Maize and Wheat Improvement Center, National Agricultural Research Center, Islamabad 44000, Pakistan
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
4
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
5
|
Kosgey ZC, Edae EA, Dill-Macky R, Jin Y, Bulbula WD, Gemechu A, Macharia G, Bhavani S, Randhawa MS, Rouse MN. Mapping and Validation of Stem Rust Resistance Loci in Spring Wheat Line CI 14275. FRONTIERS IN PLANT SCIENCE 2020; 11:609659. [PMID: 33510752 PMCID: PMC7835402 DOI: 10.3389/fpls.2020.609659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) remains a constraint to wheat production in East Africa. In this study, we characterized the genetics of stem rust resistance, identified QTLs, and described markers associated with stem rust resistance in the spring wheat line CI 14275. The 113 recombinant inbred lines, together with their parents, were evaluated at the seedling stage against Pgt races TTKSK, TRTTF, TPMKC, TTTTF, and RTQQC. Screening for resistance to Pgt races in the field was undertaken in Kenya, Ethiopia, and the United States in 2016, 2017, and 2018. One gene conferred seedling resistance to race TTTTF, likely Sr7a. Three QTL were identified that conferred field resistance. QTL QSr.cdl-2BS.2, that conferred resistance in Kenya and Ethiopia, was validated, and the marker Excalibur_c7963_1722 was shown to have potential to select for this QTL in marker-assisted selection. The QTL QSr.cdl-3B.2 is likely Sr12, and QSr.cdl-6A appears to be a new QTL. This is the first study to both detect and validate an adult plant stem rust resistance QTL on chromosome arm 2BS. The combination of field QTL QSr.cdl-2BS.2, QSr.cdl-3B.2, and QSr.cdl-6A has the potential to be used in wheat breeding to improve stem rust resistance of wheat varieties.
Collapse
Affiliation(s)
- Zennah C. Kosgey
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Zennah C. Kosgey,
| | - Erena A. Edae
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Yue Jin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
| | - Worku Denbel Bulbula
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Ashenafi Gemechu
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Matthew N. Rouse
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
- Matthew N. Rouse,
| |
Collapse
|
6
|
Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 2019; 51:1530-1539. [DOI: 10.1038/s41588-019-0496-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023]
|
7
|
Edae EA, Pumphrey MO, Rouse MN. A Genome-Wide Association Study of Field and Seedling Response to Individual Stem Rust Pathogen Races Reveals Combinations of Race-Specific Genes in North American Spring Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:52. [PMID: 29441083 PMCID: PMC5797647 DOI: 10.3389/fpls.2018.00052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 05/22/2023]
Abstract
Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in contemporary North American spring wheat, genome-wide association analysis (GWAS) was conducted on an association mapping panel comprised of 250 elite lines. The lines were evaluated in separate nurseries each inoculated with a different P. graminis f. sp. tritici race for 3 years (2013, 2015, and 2016) at Rosemount, Minnesota allowing the evaluation of race-specificity separate from the effect of environment. The lines were also challenged with the same four races at the seedling stage in a greenhouse facility at the USDA-ARS Cereal Disease Laboratory. A total of 22,310 high-quality SNPs obtained from the Infinium 90,000 SNPs chip were used to perform association analysis. We observed often negative and sometimes weak correlations between responses to different races that highlighted the abundance of race-specific resistance and the inability to predict the response of the lines across races. Markers strongly associated with resistance to the four races at seedling and field environments were identified. At the seedling stage, the most significant marker-trait associations were detected in the regions of known major genes (Sr6, Sr7a, and Sr9b) except for race QFCSC where a strong association was detected on chromosome arm 1AL. We postulated the presence of Sr2, Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, Sr24, Sr25, Sr31, and Sr57 (Lr34) in this germplasm based on phenotypic and marker data. We found over half of the panel possessed three or more Sr genes, and most commonly included various combinations of Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, and Sr57. Most of these genes confer resistance to specific P. graminis f. sp. tritici races accounting for the prevalent stem rust resistance in North American spring wheat.
Collapse
Affiliation(s)
- Erena A. Edae
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA ARS), St. Paul, MN, United States
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Michael O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Matthew N. Rouse
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA ARS), St. Paul, MN, United States
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
8
|
Zurn JD, Rouse MN, Chao S, Aoun M, Macharia G, Hiebert CW, Pretorius ZA, Bonman JM, Acevedo M. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698. BMC Genomics 2018; 19:67. [PMID: 29357813 PMCID: PMC5776780 DOI: 10.1186/s12864-018-4438-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 was identified as a source of Pgt resistance. This accession exhibits resistance to multiple Ug99-lineage and North American Pgt races at seedling and adult-plant stages. A recombinant inbred population was developed by crossing the susceptible line LMPG-6 with a single plant selection of PI 362698. A genetic map was constructed using the Illumina iSelect 90 K wheat assay and the markers csLv34, NB-LRR3, and wMAS000003 and quantitative trait locus (QTL) analysis was performed. RESULTS QTL analysis identified five significant QTLs (α = 0.05) on chromosomes 2B, 3B, 6A, 6D, and 7A associated with wheat stem rust resistance. The QTL on chromosome 3B was identified using both field data from Kenya (Pgt Ug99-lineage races) and seedling data from Pgt race MCCF. This QTL potentially corresponds to Sr12 or a new allele of Sr12. The multi-pathogen resistance gene Sr57 located on chromosome 7D is present in PI 362698 according to the diagnostic markers csLv34 and wMAS000003, however a significant QTL was not detected at this locus. The QTLs on chromosomes 2B, 6A, and 6D were identified during seedling trials and are thought to correspond to Sr16, Sr8a, and Sr5, respectively. The QTL identified on chromosome 7A was detected using MCCF seedling data and may be Sr15 or a potentially novel allele of recently detected Ug99 resistance QTLs. CONCLUSIONS The combination of resistance QTLs found in PI 362698 is like the resistance gene combination present in the broadly resistant cultivar Thatcher. As such, PI 362698 may not be a landrace as previously thought. PI 362698 has been crossed with North Dakota wheat germplasm for future breeding efforts. Additional work is needed to fully understand why the combination of genes present in PI 362698 and 'Thatcher' provide such durable resistance.
Collapse
Affiliation(s)
- Jason D Zurn
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR, USA
| | - Matthew N Rouse
- USDA-ARS, Cereal Disease Laboratory, and Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Shiaoman Chao
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND, USA
| | - Meriem Aoun
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
| | | | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - J Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, USA
| | - Maricelis Acevedo
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.
- International Programs, College of Agriculture and Life Sciences, Cornell University, Mann Library B-75, Ithaca, NY, 14853, USA.
| |
Collapse
|