1
|
Ayanlaja AA, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, Zhang L, Xiong Y, Kambey PA, Gao D. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal 2020; 18:24. [PMID: 32050972 PMCID: PMC7017634 DOI: 10.1186/s12964-019-0485-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Nuclear translocation of several oncogenic proteins have previously been reported, but neither the translocation of doublecortin (DCX) nor the mechanism involved has been studied. DCX is a neuronal microtubule-associated protein (MAP) that is crucial for adult neurogenesis and neuronal migration and has been associated with poor prognosis in gliomas. Methods We probed DCX expression in different grades of glioma tissues and conventional cells via western blotting. Then we analyzed the expression pattern in the Oncomine cancer profiling database. Confocal Immunofluorescence was used to detect DCX expression in the cellular compartments, while subcellular fractionation was probed via western blotting. Pulse shape height analysis was utilized to verify DCX localization in a larger population of cells. Co-immunoprecipitation was used in detecting DCX-import receptors interactions. To probe for DCX functions, stable cells expressing high DCX expression or knockdown were generated using CRISPR-Cas9 viral transfection, while plasmid site-directed mutant constructs were used to validate putative nuclear localization sequence (NLS) predicted via conventional algorithms and comparison with classical NLSs. in-silico modeling was performed to validate DCX interactions with import receptors via the selected putative NLS. Effects of DCX high expression, knockdown, mutation, and/or deletion of putative NLS sites were probed via Boyden’s invasion assay and wound healing migration assays, and viability was detected by CCK8 assays in-vitro, while xenograft tumor model was performed in nude mice. Results DCX undergoes nucleocytoplasmic movement via the RanGTPase signaling pathway with an NLS located on the N-terminus between serine47-tyrosine70. This translocation could be stimulated by MARK’s phosphorylation of the serine 47 residue flanking the NLS due to aberrant expression of glial cell line-derived neurotrophic factor (GDNF). High expression and nuclear accumulation of DCX improve invasive glioma abilities in-vitro and in-vivo. Moreover, knocking down or blocking DCX nuclear import attenuates invasiveness and proliferation of glioma cells. Conclusion Collectively, this study highlights a remarkable phenomenon in glioma, hence revealing potential glioma dependencies on DCX expression, which is amenable to targeted therapy. Video abstract
Graphical Abstract ![]()
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Guanquan Ji
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.,Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, The Third Affiliated Hospital of Henan University of Science and Technology, Henan, China
| | - Jie Wang
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Yue Gao
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Bo Cheng
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Kouminin Kanwore
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Lin Zhang
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Ye Xiong
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Dominguez-Berrocal L, Cirri E, Zhang X, Andrini L, Marin GH, Lebel-Binay S, Rebollo A. New Therapeutic Approach for Targeting Hippo Signalling Pathway. Sci Rep 2019; 9:4771. [PMID: 30886324 PMCID: PMC6423280 DOI: 10.1038/s41598-019-41404-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Nuclear localization signals are short amino acid sequences that target proteins for nuclear import. In this manuscript, we have generated a chimeric tri-functional peptide composed of a cell penetrating peptide (CPP), a nuclear localization sequence and an interfering peptide blocking the interaction between TEAD and YAP, two transcription factors involved in the Hippo signalling pathway, whose deregulation is related to several types of cancer. We have validated the cell penetration and nuclear localization by flow cytometry and fluorescence microscopy and shown that the new generated peptide displays an apoptotic effect in tumor cell lines thanks to the specific nuclear delivery of the cargo, which targets a protein/protein interaction in the nucleus. In addition, the peptide has an anti-tumoral effect in vivo in xenograft models of breast cancer. The chimeric peptide designed in the current study shows encouraging prospects for developing nuclear anti- neoplastic drugs.
Collapse
Affiliation(s)
| | - Erica Cirri
- PEP Therapy, 45 rue du Cardinal Lemoine, 75005, Paris, France
| | - Xiguang Zhang
- CIMI Paris, Inserm U1135, 91, bd de l'hôpital, 75013, Paris, France
| | - Laura Andrini
- Facultad de Ciencias Medicas, UNLP-CONICET, 60 and 120, Code, 1900, La Plata, Argentina
| | - Gustavo H Marin
- Facultad de Ciencias Medicas, UNLP-CONICET, 60 and 120, Code, 1900, La Plata, Argentina
| | | | - Angelita Rebollo
- CIMI Paris, Inserm U1135, 91, bd de l'hôpital, 75013, Paris, France.
| |
Collapse
|
3
|
Meissner KA, Kronenberger T, Maltarollo VG, Trossini GHG, Wrenger C. Targeting the Plasmodium falciparum plasmepsin V by ligand-based virtual screening. Chem Biol Drug Des 2018; 93:300-312. [PMID: 30320974 DOI: 10.1111/cbdd.13416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 12/16/2022]
Abstract
Malaria is a devastating disease depending only on chemotherapy as treatment. However, medication is losing efficacy, and therefore, there is an urgent need for the discovery of novel pharmaceutics. Recently, plasmepsin V, an aspartic protease anchored in the endoplasmaic reticulum, was demonstrated as responsible for the trafficking of parasite-derived proteins to the erythrocytic surface and further validated as a drug target. In this sense, ligand-based virtual screening has been applied to design inhibitors that target plasmepsin V of P. falciparum (PMV). After screening 5.5 million compounds, four novel plasmepsin inhibitors have been identified which were subsequently analyzed for the potency at the cellular level. Since PMV is membrane-anchored, the verification in vivo by using transgenic PMV overexpressing P. falciparum cells has been performed in order to evaluate drug efficacy. Two lead compounds, revealing IC50 values were 44.2 and 19.1 μm, have been identified targeting plasmepsin V in vivo and do not significantly affect the cell viability of human cells up to 300 μm. We herein report the use of the consensus of individual virtual screening as a new technique to design new ligands, and we propose two new lead compounds as novel protease inhibitors to target malaria.
Collapse
Affiliation(s)
- Kamila Anna Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thales Kronenberger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany
| | - Vinícius Gonçalves Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|