1
|
Hu T, Lv X, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Wang S, Sun W. Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. BIOLOGY 2022; 12:biology12010065. [PMID: 36671756 PMCID: PMC9855062 DOI: 10.3390/biology12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Sox18 is a developmental gene that encodes transcription factors. It has been indicated as be a key gene affecting the growth and development of hair follicles, in which dermal papilla cells (DPCs) have been demonstrated to play an important role through their ability to induce the formation of hair follicles. Pre-laboratory studies have found that Sox18 is differentially expressed in the dermal papilla cells of different pattern types of Hu sheep. We speculated that Sox18 plays an important role in the dermal papilla cells of Hu sheep. In our study, we analyzed the effect of Sox18 on the induction ability of DPCs in order to elucidate the function and molecular mechanism of Sox18 in the DPCs of Hu sheep. We first identified the expression of Sox18 in the DPCs of Hu sheep by immunofluorescence staining. We then used alkaline phosphatase staining, cell morphology observations and RT-PCR to detect the effect of Sox18 on the induction of DPCs after overexpression of or interference with Sox18. We also used RT-PCR, WB and immunofluorescence staining to detect the effect of Sox18 on the Wnt/β-catenin signal pathway in DPCs. We found that Sox18 was specifically expressed in the DPCs of Hu sheep, and that Sox18 could enhance the alkaline phosphatase activity in the DPCs of Hu sheep and accelerate cell agglutination. The results of RT-PCR revealed that Sox18 promoted the mRNA expression of Versican, HHIP and FGFRI, and inhibited the mRNA expression of BMP4 and WIF1. Further studies showed that Sox18 promoted the expression of β-catenin and activated the Wnt/β-catenin signal pathway in DPCs. When the Wnt/β-catenin signal pathway of DPCs was activated, the induction ability of DPCs was enhanced. Overall, we believe that Sox18 could enhance the induction ability of DPCs in Hu sheep and regulate the induction ability of DPCs through the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450060, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia 4067, Australia
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (W.S.)
| |
Collapse
|
2
|
Xu Y, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Lv X, Sun W. The Effect of EGR1 on the Proliferation of Dermal Papilla Cells. Genes (Basel) 2022; 13:genes13071242. [PMID: 35886025 PMCID: PMC9321982 DOI: 10.3390/genes13071242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Early growth response factor 1 (EGR1) is a zinc-finger transcription factor that plays a vital role in the development of hair follicles. According to our previous studies, EGR1 is a transcriptional promoter of the bone morphogenetic protein 7 (BMP7), a candidate gene involved in the proliferation of dermal papilla cells. Since hair follicles are the basis of lambskin pattern formation and dermal papilla cells (DPCs) act on hair follicle growth, in order to elucidate the role of EGR1 and hair follicles, this study aimed to investigate the biological role of EGR1 in DPCs. In our study, the EGR1 coding sequence (CDS) region was firstly cloned by polymerase chain reaction, and bioinformatics analysis was performed. Then, the function of EGR1 was detected by 5-ethynyl-2’-deoxyuridine (EDU) and Cell Counting Kit-8 (CCK8), and Western blot (WB) was conducted to analyze the cellular effect of EGR1 on DPCs. The proliferative effect of EGR1 on DPCs was also further confirmed by detecting its expression by qPCR and WB on marker genes of proliferation, including PCNA and CDK2. The sequence of the EGR1 CDS region of a lamb was successfully cloned, and its nucleic acid sequence was analyzed and found to be highly homologous to Rattus norvegicus, Mus musculus, Bos taurus and Homo sapiens. Predictive analysis of the protein encoded by EGR1 revealed that it is an extra-membrane protein, and not a secretory protein, with subcellular localization in the nucleus and cytoplasm. The proliferative effect of DPCs was significantly stronger (p < 0.01) in EGR1 up-regulated DPCs compared to the controls, while the opposite result was observed in EGR1 down-regulated DPCs. Markers of proliferation including PCNA and CDK2 also appeared to be differentially upregulated in EGR1 gene overexpression compared to the controls, with the opposite result in EGR1 gene downregulation. In summary, our study revealed that EGR1 promotes the proliferation of DPCs, and we speculate that EGR1 may be closely associated with hair follicle growth and development.
Collapse
Affiliation(s)
- Yeling Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (W.S.)
| |
Collapse
|
3
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes (Basel) 2022; 13:genes13020342. [PMID: 35205386 PMCID: PMC8872417 DOI: 10.3390/genes13020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Hair follicle development is closely associated with wool curvature. Current studies reveal the crucial role of microRNAs (miRNAs) in hair follicle growth and development. However, few studies are known regarding their role in wool curvature. To reveal the potential roles of miRNAs in Hu sheep lambskin with different patterns, a total of 37 differentially expressed (DE) miRNAs were identified in hair follicles between small waves (SM) and straight wool (ST) groups using RNA-seq. Through functional enrichment and miRNA-mRNA co-expression analysis, some key miRNAs (oar-miR-143, oar-miR-200b, oar-miR-10a, oar-miR-181a, oar-miR-10b, oar-miR-125b, etc.) and miRNA-mRNA pairs (miR-125b target CD34, miR-181a target FGF12, LMO3, miR-200b target ZNF536, etc.) were identified. Though direct or indirect ways affecting hair follicle development, these miRNAs and mRNAs may have possible effects on wool curvature, and this study thus provides valuable insight on potential pattern formation.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
- Correspondence: ; Tel.: +86-139-5275-0912
| |
Collapse
|
4
|
Cui Y, Wang C, Liu L, Liu N, He J. Expression and distribution of EPHA4 and Ephrin A3 in Aohan fine-wool sheep skin. Arch Anim Breed 2022; 65:11-19. [PMID: 35047658 PMCID: PMC8759078 DOI: 10.5194/aab-65-11-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to identify the expression and
distribution of EPHA4 and Ephrin A3 genes in the development and morphogenesis of hair
follicles in fine-wool sheep. The results could lay a theoretical basis for
understanding the molecular mechanism that regulates hair follicle
development. The skin of Aohan fine-wool sheep at different developmental
stages (embryonic day 90, E90d, and 120, E120d, and postnatal day 1, B1d,
and 30, B30d) were selected. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to
study the levels of mRNA and proteins, respectively. The RT-qPCR results
showed that the mRNA expression level of EPHA4 at B1d was significantly lower
than at E120d (p<0.01). The expression of Ephrin A3 at E120d was
significantly higher than that at E90d and B1d (p<0.01).
Immunohistochemical detection results showed that the level and localisation
of EPHA4 and Ephrin A3 proteins had spatial and temporal specificity. EPHA4 expression in dermal
papilla cells might be important for inducing Aohan fine-hair follicle
regeneration and for controlling the properties of the hair. Ephrin A3 might play an
important role in the redifferentiation of secondary hair follicles and
might also be involved in the inhibition of apoptosis-related gene
expression in hair follicles. The Ephrin A3 signalling pathway might accelerate the
growth of fine-hair follicles and increase the density of hair follicles.
Collapse
Affiliation(s)
- Yu Cui
- College of Animal Science and Technology, Qingdao Agricultural
University, Qingdao, Shandong 266109, China
| | - Chunliang Wang
- Nanchang police dog base of the Ministry of public security,
Nanchang, Jiangxi 330100, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong
266032, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural
University, Qingdao, Shandong 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural
University, Qingdao, Shandong 266109, China
| |
Collapse
|
5
|
miR-143 Targeting CUX1 to Regulate Proliferation of Dermal Papilla Cells in Hu Sheep. Genes (Basel) 2021; 12:genes12122017. [PMID: 34946965 PMCID: PMC8700861 DOI: 10.3390/genes12122017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Wool curvature is the determining factor for lambskin quality of Hu lambs. However, the molecular mechanism of wool curvature formation is not yet known. miRNA has been proved to play an important role in hair follicle development, and we have discovered a differentially expressed miRNA, miR-143, in hair follicles of different curl levels. In this study, we first examined the effects of miR-143 on the proliferation and cell cycle of dermal papilla cells using CCK8, EdU and flow cytometry and showed that miR-143 inhibited the proliferation of dermal papilla cells and slowed down the cell cycle. Bioinformatics analysis was performed to predict the target genes KRT71 and CUX1 of miR-143, and both two genes were expressed at significantly higher levels in small waves than in straight lambskin wool (p < 0.05) as detected by qPCR and Western blot (WB). Then, the target relationships between miR-143 and KRT71 and CUX1 were verified through the dual-luciferase assay in 293T cells. Finally, after overexpression and suppression of miR-143 in dermal papilla cells, the expression trend of CUX1 was contrary to that of miR-143. Meanwhile, KRT71 was not detected because KRT71 was not expressed in dermal papilla cells. Therefore, we speculated that miR-143 can target CUX1 to inhibit the proliferation of dermal papilla cells, while miR-143 can target KRT71 to regulate the growth and development of hair follicles, so as to affect the development of hair follicles and ultimately affect the formation of wool curvature.
Collapse
|
6
|
Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, Babenko O, Stavetska R, Kalashnik O, Kucher D, Kochuk-Yashchenko O, Asadollahpour Nanaei H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 2021; 17:369. [PMID: 34861880 PMCID: PMC8641187 DOI: 10.1186/s12917-021-03077-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sheep were among the first animals to be domesticated. They are raised all over the world and produce a major scale of animal-based protein for human consumption and play an important role in agricultural economy. Iran is one of the important locations for sheep genetic resources in the world. Here, we compared the Illumina Ovine SNP50 BeadChip data of three Iranian local breeds (Moghani, Afshari and Gezel), as a population that does not undergone artificial breeding programs as yet, and five other sheep breeds namely East Friesian white, East Friesian brown, Lacaune, DorsetHorn and Texel to detect genetic mechanisms underlying economical traits and daptation to harsh environments in sheep. RESULTS To identify genomic regions that have been targeted by positive selection, we used fixation index (Fst) and nucleotide diversity (Pi) statistics. Further analysis indicated candidate genes involved in different important traits such as; wool production included crimp of wool (PTPN3, NBEA and KRTAP20-2 genes), fiber diameter (PIK3R4 gene), hair follicle development (LHX2 gene), the growth and development of fiber (COL17A1 gene)), adaptation to hot arid environments (CORIN gene), adaptive in deficit water status (CPQ gene), heat stress (PLCB4, FAM107B, NBEA, PIK3C2B and USP43 genes) in sheep. CONCLUSIONS We detected several candidate genes related to wool production traits and adaptation to hot arid environments in sheep that can be applicable for inbreeding goals. Our findings not only include the results of previous researches, but also identify a number of novel candidate genes related to studied traits. However, more works will be essential to acknowledge phenotype- genotype relationships of the identified genes in our study.
Collapse
Affiliation(s)
| | | | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz, Iran
| | - Olena Babenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Ruslana Stavetska
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Oleksandr Kalashnik
- Department of Animal Science, Sumy National Agrarian University, Sumy, Ukraine
| | - Dmytro Kucher
- Department of Breeding, Animal Genetics and Biotechnology, Polissia National University, Zhytomyr, Ukraine
| | | | | |
Collapse
|
7
|
Qu H, Wu S, Li J, Ma T, Li J, Xiang B, Jiang H, Zhang Q. MiR-125b regulates the differentiation of hair follicles in Fine-wool Sheep and Cashmere goats by targeting MXD4 and FGFR2. Anim Biotechnol 2021; 34:357-364. [PMID: 34487480 DOI: 10.1080/10495398.2021.1968884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the development of miRNAs identification technology, more and more miRNAs have been discovered, and the role of miRNAs in the development of animal hair follicles has become a focus of research on hair-producing animals. In the previous experiment, compare the microRNA (miRNA) trancriptomes of goats and sheep skin using Solexa sequencing and differentially expressed miR-125b was screened. However, the mechanism of miR-125b regulating hair follicle development is not clear. Therefore, in the present study, the expression of miR-125b, MXD4 and FGFR2 in skin tissue of Fine-wool Sheep and Cashmere goats and HEK-293T cells was examined by qPCR and Western blot. Furthermore, the correlation between miR-125b and the predicted target gene (MXD4, FGFR2) was verified using the Dual-luciferase Reporter assay. We demonstrated that the expression of MXD4 and FGFR2 in Cashmere goats was significantly higher than that of Fine-wool Sheep, and the expression was opposite to that of miR-125b. miR-125b can down-regulate the levels of MXD4 and FGFR2. Dual-luciferase reporter gene assay showed that miR-125b could bind to the 3'-UTR region of target genes FGFR2 and MXD4, suggesting that MXD4 and FGFR2 were target genes of miR-125b. This study has shown that the growth and development of hair follicles in skin tissue of Fine-wool Sheep and Cashmere goats from the new regulatory levels of miRNAs, and clarified the mechanism of miR-125b and its target genes in the development of hair follicles in the skin.
Collapse
Affiliation(s)
- Haie Qu
- College of Veterinary Medicine, Jilin University, Changchun, China.,Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Sufang Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Tao Ma
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiaoling Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Ma J, Wang J, Feng Y, Zhang L, Hu H, Wang Q, Chu C, Qu J, Wang Y, Li Y. Silencing MAP3K1 expression inhibits the proliferation of goat hair follicle stem cells. In Vitro Cell Dev Biol Anim 2021; 57:428-437. [PMID: 33748907 DOI: 10.1007/s11626-021-00557-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
The Yangtze River Delta White Goat is the only goat breed in the world that can produce superior-quality brush hair. Previous studies have shown that some genes are expressed differentially in the skin tissues between the goats produced superior-quality and normal-quality brush hair. Studies also have shown that different gene play varied roles in regulating the proliferation and apoptosis of hair follicle stem cells. However, the biological function of MAP3K1 (mitogen-activated protein kinase kinase kinase 1) gene in hair follicle stem cells is not fully understood. This study aims to investigate the role of MAP3K1 knockdown during the proliferation and apoptosis of hair follicle stem cells. RT-qPCR and Western blot were used to detect mRNA gene and protein expression level, CCK-8 and EdU assays were used to detect cell proliferation, and cell cycle and apoptosis were detected by flow cytometry. The results showed that the MAP3K1 expression level was significantly higher in the skin tissue of produced superior-quality brush hair than that in produced normal-quality brush hair. Moreover, functional studies indicated that si-MAP3K1 significantly inhibits the proliferation of hair follicle stem cells that came from a superior goat and promotes its apoptosis. Based on aforementioned assays, we speculated that MAP3K1 might play a regulatory effect in superior-quality brush hair traits.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yunkui Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huiru Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Changjiang Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Ma L, Li Y, Ma X, EER H. Genome-wide SNPs and indels characteristics of three chinese domestic sheep breeds from different ecoregions. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Lv X, Chen W, Sun W, Hussain Z, Wang S, Wang J. Analysis of lncRNAs Expression Profiles in Hair Follicle of Hu Sheep Lambskin. Animals (Basel) 2020; 10:ani10061035. [PMID: 32549352 PMCID: PMC7341247 DOI: 10.3390/ani10061035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Lambskin of the Hu sheep exhibits high economic value due to its water-wave pattern. Wool curvature is the key factor of the pattern types and quality of lambskin, and it is formed by the interaction between dermal papilla cells and hair matrix cells in the hair follicle, which is regulated by various genes and signaling pathways. Herein, three full-sibling pairs of two-day-old healthy lambs (n = 6) were divided into a straight wool group (ST) and small waves group (SM) with three repetitions. RNA-seq was applied to determine the expression profile of mRNAs and lncRNAs in Hu sheep hair follicles. 25 differentially expressed mRNAs and 75 differentially expressed lncRNAs were found between SM and ST. FGF12, ATP1B4, and TCONS_00279168 were probably associated with hair follicle development. Then, Gene Ontology (GO) and KEGG enrichment analysis were implemented for the functional annotation of target genes of differentially expressed lncRNAs. The results showed that many genes, such as FGF12 and ATP1B4, were found enriched in PI3K-Akt signaling, MAPK signaling, and Ras signaling pathway associated with hair follicle growth and development. In addition, the interaction network of differentially expressed lncRNAs and mRNAs showed that a total of 6 differentially expressed lncRNAs were associated with 12 differentially expressed mRNAs, which may be as candidate mRNAs and lncRNAs. TCONS_00279168 may target ATP1B4 and FGF12 to regulate MAPK, PI3K-Akt, Ras signaling pathways involved in the sheep hair follicle development process. These results will provide the basis for exploring hair follicle development.
Collapse
Affiliation(s)
- Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (J.W.); Tel.: +86-0514-87979213 (W.S.)
| | - Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (W.C.); (Z.H.); (S.W.)
- Correspondence: (W.S.); (J.W.); Tel.: +86-0514-87979213 (W.S.)
| |
Collapse
|
11
|
Zhao R, Li J, Liu N, Li H, Liu L, Yang F, Li L, Wang Y, He J. Transcriptomic Analysis Reveals the Involvement of lncRNA-miRNA-mRNA Networks in Hair Follicle Induction in Aohan Fine Wool Sheep Skin. Front Genet 2020; 11:590. [PMID: 33117415 PMCID: PMC7528302 DOI: 10.3389/fgene.2020.00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNA) and microRNAs (miRNA) are new found classes of non-coding RNAs (ncRNAs) that are not translated into proteins but regulate various cellular and biological processes. In this study, we conducted a transcriptomic analysis of ncRNA and mRNA expression in Aohan fine wool sheep (AFWS) at different growth stages (embryonic day 90, embryonic day 120, and the day of birth), and explored their relationship with wool follicle growth. In total, 461 lncRNAs, 106 miRNAs, and 1,009 mRNAs were found to be differentially expressed during the three stages of wool follicle development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to clarify the roles of the differentially expressed lncRNA, miRNA, and mRNA in the different stages of wool follicle development. Quantitative real-time PCR (qRT-PCR) was used to validate the results of RNA-seq analysis. lncRNA (MSTRG.223165) was found to act as a competing endogenous RNA (ceRNA) and may participate in wool follicle development by acting as an miR-21 sponge. Network prediction implicated the MSTRG.223165-miR-21-SOX6 axis in the wool follicle development. The targeting relationships of miR-21 with SOX6 and MSTRG.223165 were validated in dual-luciferase assays. This is the first report indicating the association of the lncRNA-miRNA-mRNA network with wool follicle development in AFWS. This study provides new insights into the regulation of the wool follicle growth and represents a solid foundation for wool sheep breeding programs.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Enhanced Immune Responses with Serum Proteomic Analysis of Hu Sheep to Foot-and-Mouth Disease Vaccine Emulsified in a Vegetable Oil Adjuvant. Vaccines (Basel) 2020; 8:vaccines8020180. [PMID: 32326379 PMCID: PMC7349086 DOI: 10.3390/vaccines8020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study demonstrated that a vegetable oil consisting of soybean oil, vitamin E, and ginseng saponins (SO-VE-GS) had an adjuvant effect on a foot-and-mouth disease (FMD) vaccine in a mouse model. The present study was to compare the adjuvant effects of SO-VE-GS and the conventional ISA 206 on an FMD vaccine in Hu sheep. Animals were intramuscularly (i.m.) immunized twice at a 3-week interval with 1 mL of an FMD vaccine adjuvanted with SO-VE-GS (n = 10) or ISA 206 (n = 9). Animals without immunization served as control (n = 10). Blood was sampled prior to vaccination and at 2, 4, 6, and 8 weeks post the booster immunization to detect FMD virus (FMDV)-specific IgG. Blood collected at 8 weeks after the booster was used for the analyses of IgG1 and IgG2, serum neutralizing (SN) antibody, IL-4 and IFN-γ production, and proteomic profiles. The results showed that IgG titers rose above the protection level (1:128) in SO-VE-GS and ISA 206 groups after 2 and 4 weeks post the booster immunization. At 6 weeks post the booster, the ISA 206 group had 1 animal with IgG titer less than 1:128 while all the animals in the SO-VE-GS group retained IgG titers of more than 1:128. At 8 weeks post the booster, 6 of 9 animals had IgG titers less than 1:128 with a protective rate of 33.3% in the ISA 206 group, while only 1 of 10 animals had IgG titer less than 1:128 with a protective rate of 90% in the SO-VE-GS group, with statistical significance. In addition, IgG1, IgG2, SN antibodies, IL-4, and IFN-γ in the SO-VE-GS group were significantly higher than those of the ISA 206 group. Different adjuvant effects of SO-VE-GS and ISA 206 may be explained by the different proteomic profiles in the two groups. There were 39 and 47 differentially expressed proteins (DEPs) identified in SO-VE-GS compared to the control or ISA 206 groups, respectively. In SO-VE-GS vs. control, 3 immune related gene ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were detected, while 2 immune related GO terms and 5 KEGG pathways were found in ISA 206 vs. control. GO and KEGG analyses indicated that 'positive regulation of cytokine secretion', 'Th1/Th2 cell differentiation', and 'Toll-like receptor signaling pathways', were obviously enriched in the SO-VE-GS group compared to the other groups. Coupled with protein-protein interaction (PPI) analysis, we found that B7TJ15 (MAPK14) was a key DEP for SO-VE-GS to activate the immune responses in Hu sheep. Therefore, SO-VE-GS might be a promising adjuvant for an FMD vaccine in Hu sheep.
Collapse
|
13
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
14
|
Li S, Zheng X, Nie Y, Chen W, Liu Z, Tao Y, Hu X, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Defining Key Genes Regulating Morphogenesis of Apocrine Sweat Gland in Sheepskin. Front Genet 2019; 9:739. [PMID: 30761184 PMCID: PMC6363705 DOI: 10.3389/fgene.2018.00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
The apocrine sweat gland is a unique skin appendage in humans compared to mouse and chicken models. The absence of apocrine sweat glands in chicken and murine skin largely restrains further understanding of the complexity of human skin biology and skin diseases, like hircismus. Sheep may serve as an additional system for skin appendage investigation owing to the distributions and histological similarities between the apocrine sweat glands of sheep trunk skin and human armpit skin. To understand the molecular mechanisms underlying morphogenesis of apocrine sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631 differentially expressed genes that were mainly enriched in three functional groups (cellular component, molecular function and biological process), particularly in gland, epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms enriched in epithelial cell migration and morphogenesis of branching epithelium that were potentially correlated with the wool follicle peg elongation. An additional 5 GO terms were enriched in gland morphogenesis (20 genes), gland development (42 genes), salivary gland morphogenesis and development (8 genes), branching involved in salivary gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4 genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes and Genomes pathway genes (WNT and TGF-β) were potentially involved in the induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3, WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR. Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin. SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were both observed in precursor cells of apocrine sweat glands and later in gland ducts. These results combined with the upregulation of BMP signaling genes indicate that apocrine sweat glands were originated from outer root sheath of primary wool follicle and positively regulated by BMP signaling. This report established the primary network regulating early development of apocrine sweat glands in sheepskin and will facilitate the further understanding of histology and pathology of apocrine sweat glands in human and companion animal skin.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingfeng Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Haibei, China
| | | | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Haixi, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Differential expression of miR-let7a in hair follicle cycle of Liaoning cashmere goats and identification of its targets. Funct Integr Genomics 2018; 18:701-707. [DOI: 10.1007/s10142-018-0616-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
16
|
Liu Y, Zhang J, Xu Q, Kang X, Wang K, Wu K, Fang M. Integrated miRNA-mRNA analysis reveals regulatory pathways underlying the curly fleece trait in Chinese tan sheep. BMC Genomics 2018; 19:360. [PMID: 29751742 PMCID: PMC5948824 DOI: 10.1186/s12864-018-4736-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/26/2018] [Indexed: 12/26/2022] Open
Abstract
Background Tan sheep is an indigenous Chinese breed well known for its beautiful curly fleece. One prominent breed characteristic of this sheep breed is that the degree of curliness differs markedly between lambs and adults, but the molecular mechanisms regulating the shift are still not well understood. In this study, we identified 49 differentially expressed (DE) microRNAs (miRNAs) between Tan sheep at the two stages through miRNA-seq, and combined the data with that in our earlier Suppression Subtractive Hybridization cDNA (SSH) library study to elucidate the mechanisms underlying curly fleece formation. Results Thirty-six potential miRNA-mRNA target pairs were identified using computational methods, including 25 DE miRNAs and 10 DE genes involved in the MAPK signaling pathway, steroid biosynthesis and metabolic pathways. With the differential expressions between lambs and adults confirmed by qRT-PCR, some miRNAs were already annotated in the genome, but some were novel miRNAs. Inhibition of KRT83 expression by miR-432 was confirmed by both gene knockdown with siRNA and overexpression, which was consistent with the miRNAs and targets prediction results. Conclusion Our study represents the comprehensive analysis of mRNA and miRNA in Tan sheep and offers detailed insight into the development of curly fleece as well as the potential mechanisms controlling curly hair formation in humans. Electronic supplementary material The online version of this article (10.1186/s12864-018-4736-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100194, Beijing, People's Republic of China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, People's Republic of China
| | - Jibin Zhang
- Department of Cell and Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100194, Beijing, People's Republic of China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100194, Beijing, People's Republic of China
| | - Keliang Wu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100194, Beijing, People's Republic of China.
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100194, Beijing, People's Republic of China. .,Beijing Key Laboratory for Animal Genetic Improvement, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Xu FQ, Li A, Lan JJ, Wang YM, Yan MJ, Lian SY, Wu X. Study of formation of green eggshell color in ducks through global gene expression. PLoS One 2018; 13:e0191564. [PMID: 29377917 PMCID: PMC5788541 DOI: 10.1371/journal.pone.0191564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.
Collapse
Affiliation(s)
- Fa Qiong Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Jing Jing Lan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Yue Ming Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Mei Jiao Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Sen Yang Lian
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| | - Xu Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
18
|
Guo H, Cheng G, Li Y, Zhang H, Qin K. A Screen for Key Genes and Pathways Involved in High-Quality Brush Hair in the Yangtze River Delta White Goat. PLoS One 2017; 12:e0169820. [PMID: 28125615 PMCID: PMC5268778 DOI: 10.1371/journal.pone.0169820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
The Yangtze River Delta White Goat is the only goat breed that produces high-quality brush hair, or type III hair, which is specialized for use in top-grade writing brushes. There has been little research, especially molecular research, on the traits that result in high-quality brush hair in the Yangtze River Delta White Goat. To explore the molecular mechanisms of the formation of high-quality brush hair, High-throughput RNA-Seq technology was used to compare skin samples from Yangtze River Delta White Goats that produce high-quality hair and non high-quality hair for identification of the important genes and related pathways that might influence the hair quality traits. The results showed that 295 genes were expressed differentially between the goats with higher and lower hair quality, respectively. Of those genes, 132 were up-regulated, 62 were down-regulated, and 101 were expressed exclusively in the goats with high-quality brush hair. Gene Ontology and Metabolic Pathway Significant Enrichment analyses of the differentially expressed genes indicated that the MAP3K1, DUSP1, DUSP6 and the MAPK signaling pathway might play important roles in the traits important for high-quality brush hair.
Collapse
Affiliation(s)
- Haiyan Guo
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohu Cheng
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Hao Zhang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kangle Qin
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|