1
|
Zhou J, Lei B, Shi F, Luo X, Wu K, Xu Y, Zhang Y, Liu R, Wang H, Zhou J, He X. CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives. Front Immunol 2024; 15:1476859. [PMID: 39749335 PMCID: PMC11694027 DOI: 10.3389/fimmu.2024.1476859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE. In this paper, we aim to provide an in-depth analysis of the advancements in CAR-T therapy for SLE, focusing on its potential to revolutionize treatment for this complex disease. We explore the fundamental mechanisms of CAR-T cell action, the rationale for its application in SLE, and the immunological underpinnings of the disease. We also summarize clinical data on the safety and efficacy of anti-CD19 and anti-B cell maturation antigen (BCMA) CAR-T cells in targeting B-cells in SLE. We discuss the clinical implications of these findings and the potential for CAR-T therapy to improve outcomes in severe or refractory SLE cases. The integration of CAR-T therapy into the SLE treatment paradigm presents a new horizon in autoimmunity research and clinical practice. This review underscores the need for continued exploration and optimization of CAR-T strategies to address the unmet needs of SLE patients.
Collapse
Affiliation(s)
- Jincai Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | | | | | | | | | | | | | | | | | - Joy Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | - Xiaowen He
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| |
Collapse
|
2
|
Deng T, Lei F, Wang Z, Wang Y, Li G, Zhu Y, Du B, Xi X. MCP-1/CCR2 axis is involved in the regulation of γδT cells in lupus nephritis. Scand J Immunol 2023; 98:e13305. [PMID: 38441377 DOI: 10.1111/sji.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 03/07/2024]
Abstract
γδT cells are important innate immune cells that are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a serious complication of SLE, characterized by the accumulation of immune cells (including γδT cells) in the target organs to participate in the disease process. Therefore, clarifying how γδT cells chemotactically migrate to target organs may be a key to developing therapeutic methods against LN. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of chemokines in LN patients and healthy controls. Real-time polymerase chain reaction (RT-PCR) and flow cytometry were used to measure the expression of chemokine receptors on the surface of γδT cells. The chemotactic migration ability of γδT cells was detected by Transwell assay. Signalling pathway activation of γδT cells was detected by Automated Capillary Electrophoresis Immunoassay and flow cytometry. The serum levels of chemokines, including monocyte chemoattractant protein-1 (MCP-1) in LN patients, were significantly increased. CCR2, the receptor of MCP-1, was also highly expressed on the surface of peripheral γδT cells in LN patients. In addition, the exogenous addition of MCP-1 can enhance chemotactic migration of γδT cells in LN patients. MCP-1 could activate STAT3 signalling in LN patients' peripheral γδT cells. γδT cells might participate in the pathogenesis of LN through MCP-1/CCR2 axis. This finding provides new opportunities for developing treatment methods against LN by targeting MCP-1/CCR2 axis.
Collapse
Affiliation(s)
- Ting Deng
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Feifei Lei
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongyu Wang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yangbin Wang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Gang Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Boyu Du
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xueyan Xi
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Lerkvaleekul B, Apiwattanakul N, Tangnararatchakit K, Jirapattananon N, Srisala S, Vilaiyuk S. Associations of lymphocyte subpopulations with clinical phenotypes and long-term outcomes in juvenile-onset systemic lupus erythematosus. PLoS One 2022; 17:e0263536. [PMID: 35130317 PMCID: PMC8820627 DOI: 10.1371/journal.pone.0263536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Juvenile-onset systemic lupus erythematosus (JSLE) is a complex and heterogeneous immune-mediated disease. Cellular components have crucial roles in disease phenotypes and outcomes. We aimed to determine the associations of lymphocyte subsets with clinical manifestations and long-term outcomes in JSLE patients. METHODS A cohort of 60 JSLE patients provided blood samples during active disease, of whom 34 provided further samples during inactive disease. In a longitudinal study, blood samples were obtained from 49 of the JSLE patients at 0, 3, and 6 months. The healthy control (HC) group consisted of 42 age-matched children. Lymphocyte subsets were analyzed by flow cytometry. RESULTS The percentages of CD4+ T, γδ T, and NK cells were significantly decreased in JSLE patients compared with HC, while the percentages of CD8+ T, NKT, and CD19+ B cells were significantly increased. The percentage of regulatory T cells (Tregs) was significantly lower in JSLE patients with lupus nephritis (LN) than in non-LN JSLE patients and HC. The patients were stratified into high and low groups by the median frequency of each lymphocyte subset. The γδ T cells high group and NK cells high group were significantly related to mucosal ulcer. The CD4+ T cells high group was significantly associated with arthritis, and the NKT cells high group was substantially linked with autoimmune hemolytic anemia. The CD8+ T cells low group was mainly related to vasculitis, and the Tregs low group was significantly associated with LN. The percentage of Tregs was significantly increased at 6 months of follow-up, and the LN JSLE group had a lower Treg percentage than the non-LN JSLE group. Predictors of remission on therapy were high Tregs, high absolute lymphocyte count, direct Coombs test positivity, and LN absence at enrollment. CONCLUSION JSLE patients exhibited altered lymphocyte subsets, which were strongly associated with clinical phenotypes and long-term outcomes.
Collapse
Affiliation(s)
- Butsabong Lerkvaleekul
- Faculty of Medicine Ramathibodi Hospital, Division of Rheumatology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Faculty of Medicine Ramathibodi Hospital, Division of Infectious Disease, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Kanchana Tangnararatchakit
- Faculty of Medicine Ramathibodi Hospital, Division of Nephrology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Nisa Jirapattananon
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Supanart Srisala
- Faculty of Medicine Ramathibodi Hospital, Research Center, Mahidol University, Bangkok, Thailand
| | - Soamarat Vilaiyuk
- Faculty of Medicine Ramathibodi Hospital, Division of Rheumatology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Izati AF, Mohd Shukri ND, Wan Ghazali WS, Che Hussin CM, Wong KK. Increased IL-23R + Th Cells Population Exhibits Higher SLEDAI-2K Scores in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:690908. [PMID: 34484186 PMCID: PMC8416093 DOI: 10.3389/fimmu.2021.690908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
The IL-23/IL-17 axis plays causative roles in the development and progression of systemic lupus erythematosus (SLE). However, it remains unclear if the IL-17RA+ and IL-23R+ T helper (Th) cells populations are associated with the serum IL-17 and IL-23 levels, or with the immunological parameters and disease activities in SLE patients. Herein, we examined the proportion of IL-17RA+ and IL-23R+ Th cells and serum levels of IL-17 and IL-23 in established SLE patients (n = 50) compared with healthy controls (n = 50). The associations of these interleukins and their receptors with immunological parameters [anti-nuclear antibody (ANA), anti-dsDNA antibody, and C-reactive protein (CRP)] and SLE disease activity (SLEDAI-2K scores) in SLE patients were assessed. CD3+CD4+ Th cells of SLE patients demonstrated significantly elevated IL-17RA+ (p = 1.12 x 10-4) or IL-23R+ (p = 1.98 x 10-29) populations compared with the healthy controls. Serum IL-17 levels were significantly lower in SLE patients compared with the healthy controls (p = 8.32 x 10-5), while no significant difference was observed for the IL-23 serum levels between both groups. IL-23R+ Th cells population was significantly associated with higher SLEDAI-2K scores (p = 0.017). In multivariate analysis, the proportion of IL-23R+ Th cells remained significantly associated with higher SLEDAI-2K scores independent of prednisolone intake (p = 0.027). No associations were observed between the interleukin parameters (i.e., IL-17, IL-23, IL-17RA+ Th cells, and IL-23R+ Th cells) with ANA, anti-dsDNA, and CRP status, suggesting that the IL-17/IL-23 axis acts independently of these immunological parameters. In conclusion, our results support that therapeutic inhibition of the IL-23/IL-17 axis receptors on Th cells, particularly IL-23R, is potentially relevant in SLE patients.
Collapse
Affiliation(s)
- Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
5
|
Wang Y, Zou J, Jia Y, Zhang X, Wang C, Shi Y, Guo D, Wu Z, Wang F. The Mechanism of Lavender Essential Oil in the Treatment of Acute Colitis Based on "Quantity-Effect" Weight Coefficient Network Pharmacology. Front Pharmacol 2021; 12:644140. [PMID: 33981227 PMCID: PMC8107818 DOI: 10.3389/fphar.2021.644140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to introduce a new weight coefficient combined with network pharmacology to predict the potential active components, action targets, and signal pathways of lavender essential oil and to investigate the therapeutic effect of lavender essential oil on colitis through animal experiments. The component targets of lavender essential oil were mined from the Pubchem and SwissTargetPrediction databases, and the relative content of lavender essential oil was compared with OB (oral bioavailability) to establish a “quantity–effect” weight coefficient. Online databases such as GeneCards and String were used to construct a “lavender essential oil compound target disease target” network to extract the key targets of core compounds acting on diseases. The clusterProfiler package in R language programming of Rstudio software was used to analyze the enrichment of the related targets by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the enriched pathways were reordered according to the “quantity–effect” weight coefficient of the targets they participated in. Following up on the findings, the pharmacodynamic test showed that, after injecting lavender essential oil into mice, the levels of inflammatory cytokines including EGFR, TNF-α, and IFN-γ in serum and colon tissue decreased, and lavender essential oil could mediate Th17 cell differentiation by reducing dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) colonic mucosal damage. The results indicated that lavender essential oil can alleviate DSS-induced colonic mucosal injury in ulcerative Colitis mice. Based on the network pharmacology of the “quantity–effect” weight coefficient, this study indicated that lavender essential oil can regulate the level of inflammatory factors, inhibit inflammatory reactions through a multicomponent and multitarget strategy, and ultimately alleviate the colonic mucosal injury of UC mice. Through the weight coefficient network pharmacology mining, it was concluded that the Th17 cell differentiation, PI3K-Akt signaling pathway, and Th1 and Th2 cell differentiation of lavender essential oil in the treatment of UC may be the key pathway for the treatment of the disease. Through the establishment of a weight coefficient combined with network pharmacology and the combination of dose and effect, it shows that network pharmacology may provide a better basis for the treatment of disease mechanism.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanzhuo Jia
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenfeng Wu
- Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fang Wang
- Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Qi C, Wang Y, Li P, Zhao J. Gamma Delta T Cells and Their Pathogenic Role in Psoriasis. Front Immunol 2021; 12:627139. [PMID: 33732249 PMCID: PMC7959710 DOI: 10.3389/fimmu.2021.627139] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
γδT cells are an unconventional population of T lymphocytes that play an indispensable role in host defense, immune surveillance, and homeostasis of the immune system. They display unique developmental, distributional, and functional patterns and rapidly respond to various insults and contribute to diverse diseases. Although γδT cells make up only a small portion of the total T cell pool, emerging evidence suggest that aberrantly activated γδT cells may play a role in the pathogenesis of psoriasis. Dermal γδT cells are the major IL-17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, γδT cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. This review discusses the differentiation, development, distribution, and biological function of γδT cells and the mechanisms by which they contribute to psoriasis. Potential therapeutic approaches targeting these cells in psoriasis have also been detailed.
Collapse
Affiliation(s)
- Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Comparative transcriptome analysis reveals a potential role for CaMK4 in γδT17 cells from systemic lupus erythematosus patients with lupus nephritis. Int Immunopharmacol 2020; 80:106139. [DOI: 10.1016/j.intimp.2019.106139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/30/2023]
|
8
|
Bank I. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells 2020; 9:E462. [PMID: 32085540 PMCID: PMC7072729 DOI: 10.3390/cells9020462] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune rheumatic diseases (ARDs), affecting ~1-1.5% of all humans, are associated with considerable life long morbidity and early mortality. Early studies in the 1990s showed numerical changes of the recently discovered γδ T cells in the peripheral blood and in affected tissues of patients with a variety of ARDs, kindling interest in their role in the immuno-pathogenesis of these chronic inflammatory conditions. Indeed, later studies applied rapid developments in the understanding of γδ T cell biology, including antigens recognized by γδ T cells, their developmental programs, states of activation, and cytokine production profiles, to analyze their contribution to the pathological immune response in these disorders. Here we review the published studies addressing the role of γδ T in the major autoimmune rheumatic diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, systemic lupus erythematosus and scleroderma, and animal models thereof. Due to their unique properties spanning adaptive and innate immune functions, the ever deeper understanding of this unique T cell population is shedding new light on the pathogenesis of, while potentially enabling new therapeutic approaches to, these diseases.
Collapse
Affiliation(s)
- Ilan Bank
- Rheumatology Unit, Autoimmunity Center, Sheba Medical Center, Tel-Hashomer 52621, Israel
| |
Collapse
|
9
|
Guo JQ, Liu J, Lu B. [Expression of gamma-delta T cells in immune microenvironment in children with Henoch-Schönlein purpura]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:960-965. [PMID: 31642427 PMCID: PMC7389730 DOI: 10.7499/j.issn.1008-8830.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the role of gamma-delta T (γδ T) cells and its subsets in the immunopathogenesis of Henoch-Schönlein purpura (HSP) in children, and to provide new ideas for the treatment of HSP in children from the aspect of γδ T cell regulation. METHODS A total of 33 children with HSP were enrolled as the HSP group, and 21 healthy children were enrolled as the healthy control group. The percentages of γδ T cells and its subsets Vδ1+ T and Vδ2+ T cells among peripheral blood mononuclear cells (PBMCs) were measured, as well as the apoptosis rate of γδ T cell and plasma level of interleukin-17 (IL-17). RESULTS Compared with the healthy control group, the HSP group had significantly lower percentages of lymphocytes in PBMCs and Vδ2+ T cells in γδ T cells (P<0.05). The HSP group had significantly higher percentage of Vδ1+ T cells in γδ T cells and plasma level of IL-17 than the healthy control group. The HSP group had a significantly higher overall apoptosis rate of γδ T cells than the healthy control group (P<0.05), especially early apoptosis. The percentage of Vδ2+ T cells was positively correlated with overall apoptosis rate (rs=0.615, P<0.05) and was negatively correlated with IL-17 level (rs=-0.398, P<0.05). CONCLUSIONS Vδ1+/Vδ2+ T cell immune imbalance mediated by γδ T cells and over-activation of IL-17 may be involved in the development of HSP, among which the disturbance of immune tolerance induced by Vδ2+ T cells plays an important role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Jia-Qi Guo
- Ningxia Medical University, Yinchuan 750004, China.
| | | | | |
Collapse
|
10
|
Maimaitijiang G, Watanabe M, Shinoda K, Isobe N, Nakamura Y, Masaki K, Matsushita T, Yoshikai Y, Kira JI. Long-term use of interferon-β in multiple sclerosis increases Vδ1 -Vδ2 -Vγ9 - γδ T cells that are associated with a better outcome. J Neuroinflammation 2019; 16:179. [PMID: 31519178 PMCID: PMC6743159 DOI: 10.1186/s12974-019-1574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Background We previously reported that Vδ2+Vγ9+ γδ T cells were significantly decreased in multiple sclerosis (MS) patients without disease-modifying therapies (untreated MS) and were negatively correlated with Expanded Disability Status Scale (EDSS) scores, suggesting protective roles of Vδ2+Vγ9+ γδ T cells. Interferon-β (IFN-β) is one of the first-line disease-modifying drugs for MS. However, no previous studies have reported changes in γδ T cell subsets under IFN-β treatment. Therefore, we aimed to clarify the effects of the long-term usage of IFN-β on γδ T cell subsets in MS patients. Methods Comprehensive flow cytometric immunophenotyping was performed in 35 untreated MS and 21 MS patients on IFN-β for more than 2 years (IFN-β-treated MS) including eight super-responders fulfilling no evidence of disease activity criteria, and 44 healthy controls (HCs). Results The percentages of Vδ2+Vγ9+ cells in γδ T cells were significantly lower in untreated and IFN-β-treated MS patients than in HCs. By contrast, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were markedly higher in IFN-β-treated MS patients than in HCs and untreated MS patients (both p < 0.001). A significant negative correlation between the percentages of Vδ2+Vγ9+ cells in γδ T cells and EDSS scores was confirmed in untreated MS but not evident in IFN-β-treated MS. Moreover, class-switched memory B cells were decreased in IFN-β-treated MS compared with HCs (p < 0.001) and untreated MS patients (p = 0.006). Interestingly, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were negatively correlated with class-switched memory B cell percentages in all MS patients (r = − 0.369, p = 0.005), and the percentages of Vδ1−Vδ2−Vγ9− cells in Vδ1−Vδ2− γδ T cells were negatively correlated with EDSS scores only in IFN-β super-responders (r = − 0.976, p < 0.001). Conclusions The present study suggests that long-term usage of IFN-β increases Vδ1−Vδ2−Vγ9− γδ T cells, which are associated with a better outcome, especially in IFN-β super-responders. Thus, increased Vδ1−Vδ2−Vγ9− cells together with decreased class-switched memory B cells may contribute to the suppression of disease activity in MS patients under IFN-β treatment. Electronic supplementary material The online version of this article (10.1186/s12974-019-1574-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guzailiayi Maimaitijiang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
11
|
Dolff S, Scharpenberg C, Specker C, Kribben A, Witzke O, Wilde B. IL-22 production of effector CD4 + T-cells is altered in SLE patients. Eur J Med Res 2019; 24:24. [PMID: 31331400 PMCID: PMC6643306 DOI: 10.1186/s40001-019-0385-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by T-cell-dependent B-cell activation and altered T-cell response. Co-stimulatory and co-inhibitory molecules regulate and exert T-cell differentiation, survival and cytokine production. CD134+ and PD-1+ T-cells in SLE patients are increased in SLE. The aim of this study was to characterize CD134+ and PD-1+CD4+ T-cells according to their ability to produce IFN-γ, IL-21 and IL-22 in SLE patients. METHODS Peripheral blood of 39 SLE patients and 19 healthy controls (HC) was stimulated with phorbol myristate acetate (PMA) calcium ionophore (Ca-Io). The expression of IFN-γ, IL-21 and IL-22 T-cells within the CD134+ and PD-1+ T-cells was analyzed by flow cytometry. Disease activity was assessed by SLE Disease Activity Index. RESULTS Peripheral unstimulated CD134+ and PD-1+ CD4+ T-cells were significantly increased in patients with lupus nephritis. Upon stimulation both, CD134+ and PD-1+ CD4+ T-cells, produced significantly less IFN-γ in SLE patients as compared to HC. The percentages of IL-22 within the CD134+CD4+ T-cells were also significantly decreased in SLE as compared to HC. CONCLUSION CD134+ and PD-1+CD4+ T-cells have mainly a Th1 effector T-cell signature. A lower proportion produces also IL-21 and IL-22. The impaired capacity to produce IFN-γ and IL-22 in SLE patients may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany.
| | - Claudia Scharpenberg
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Christof Specker
- Department of Rheumatology and Clinical Immunology, Kliniken Essen-Mitte, 45239, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| |
Collapse
|