1
|
Ma C, Liang J, Fang H, Luo ZW, Chen S, Zhao C. Metabolic engineering of Neurospora crassa for the production of xylitol and ethylene glycol from xylose. BIORESOURCE TECHNOLOGY 2025; 428:132459. [PMID: 40164360 DOI: 10.1016/j.biortech.2025.132459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The use of pentose from lignocellulose is critical for economic production of biofuels and chemicals. In this study, a filamentous fungus, Neurospora crassa, was used to metabolize xylose and synthesize xylitol and ethylene glycol (EG). Firstly, xylulose kinase gene was knocked out to prevent excessive xylose usage for strain growth, resulting in 5.8 ± 0.3 g/L xylitol and 58.3 ± 2.6 mg/L EG. Through optimization, the xylitol accumulation in the hydrolysate containing xylose reached 62.0 ± 0.6 g/L. The expression of 6-phosphofructokinase increased EG production with a maximum titer of 102.1 ± 1.8 mg/L, proving that the strain synthesized EG through xylulose-1-phosphate pathway. Addition of furfural or hydrolysate, and oxygen-limited environment were conducive to the EG accumulation. Further optimized strain accumulated EG up to 2586.4 ± 198.9 mg/L. This study provided the evidence of an all-natural metabolic pathway for EG synthesis in N. crassa and also demonstrated a new chassis cell for synthesis of xylitol and EG from xylose-rich hydrolysate.
Collapse
Affiliation(s)
- Caihong Ma
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Jiacheng Liang
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 Zhejiang, China
| | - Zi Wei Luo
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China.
| |
Collapse
|
2
|
Senatore VG, Reķēna A, Mapelli V, Lahtvee PJ, Branduardi P. Ethylene glycol metabolism in the oleaginous yeast Rhodotorula toruloides. Appl Microbiol Biotechnol 2025; 109:114. [PMID: 40338313 PMCID: PMC12062128 DOI: 10.1007/s00253-025-13504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/05/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The agro-food chain produces an impressive amount of waste, which includes not only lignocellulosic biomass, but also plastic, used for both protective films and packaging. Thanks to advances in enzymatic hydrolysis, it is now possible to imagine an upcycling that valorizes each waste through microbial fermentation. With this goal in mind, we first explored the ability of the oleaginous red yeast Rhodotorula toruloides to catabolize ethylene glycol (EG), obtained by the hydrolysis of polyethylene terephthalate (PET), in the presence of glucose in batch bioreactor experiments. Secondly, we focused on the physiology of EG catabolism in the presence of xylose as a sole carbon source, and in a mixture of glucose and xylose. Our results show that EG is metabolized to glycolic acid (GA) in all tested conditions. Remarkably, we report for the first time that the consumption of EG improves xylose bioprocess, possibly alleviating a cofactor imbalance by regenerating NAD(P)H. Consumption of EG in the presence of glucose started after the onset of the nitrogen limitation phase, while no significant differences were observed with the control; a 100% mol mol-1 yield of GA was obtained, which has never been reported for yeasts. Finally, a putative EG oxidative pathway was proposed by in silico analyses supported with the existing omics data. Our results propose R. toruloides as a promising candidate for the production of GA from EG that could be exploited simultaneously for the sustainable production of microbial oils from residual hemicellulosic biomasses. KEY POINTS: • Ethylene glycol (EG) is not assimilated as a carbon source by Rhodotorula toruloides • With glucose, EG is oxidized to glycolic acid (GA) with a yield of 100% (mol mol-1) • With xylose, EG to GA is associated with improved growth and xylose uptake rate.
Collapse
Affiliation(s)
- Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, Estonia
| | - Valeria Mapelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, Estonia
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
3
|
Keitel L, Schick B, Pohen G, Yordanov S, Büchs J. Online monitored characterization of Phocaeicola vulgatus for organic acid production using anaerobic microtiter plate cultivations. Biotechnol Prog 2025; 41:e3526. [PMID: 39704382 PMCID: PMC12000641 DOI: 10.1002/btpr.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Phocaeicola vulgatus (formerly Bacteroides vulgatus), an anaerobic gut bacterium, produces several organic acids. Research on P. vulgatus is still in its infancy. However, a detailed understanding of P. vulgatus growth and metabolism is essential for its assessment as an organic acid producer. Media variations, including different initial glucose and NH4Cl concentrations and osmolalities, are significant means to yield higher organic acid titers. Furthermore, examining different nitrogen and carbon sources is important to evaluate the potential of P. vulgatus for growth on renewable resources. Cultivations were performed in an in-house built device for anaerobic online-monitoring of fluorescence and scattered light in microtiter plates. Results revealed that the highest organic acid concentrations were reached while using galactose, glucose, or xylose as a carbon source, high osmolalities, and 0.25 g L-1 NH4Cl. In addition, the organic acid composition changed with changing carbon and nitrogen sources. P. vulgatus was successfully further characterized, thereby contributing to a faster characterization of other anaerobic strains and paving the way for anaerobic organic acid production.
Collapse
Affiliation(s)
- Laura Keitel
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Benjamin Schick
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Gino Pohen
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Stanislav Yordanov
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Jochen Büchs
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| |
Collapse
|
4
|
Lu YA, Liu SJ, Hou SY, Ge YY, Xia BH, Xie MX. Metabolomics distinguishes different grades of Scrophularia ningpoensis hemsl: Towards a biomarker discovery and quality evaluation. Heliyon 2024; 10:e28458. [PMID: 38601543 PMCID: PMC11004711 DOI: 10.1016/j.heliyon.2024.e28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.
Collapse
Affiliation(s)
- Yu-Ai Lu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Jun Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Yi Hou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yu-Ying Ge
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Ming-Xia Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
5
|
Paul A, Jia L, L-W Majumder E, Yoo CG, Rajendran K, Villarreal E, Kumar D. Poly(3-hydroxybuyrate) production from industrial hemp waste pretreated with a chemical-free hydrothermal process. BIORESOURCE TECHNOLOGY 2023; 381:129161. [PMID: 37172745 DOI: 10.1016/j.biortech.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In this study, a mild two-stage hydrothermal pretreatment was employed to optimally valorize industrial hemp (Cannabis sativa sp.) fibrous waste into sugars for Poly(3-hydroxybuyrate) (PHB) production using recombinant Escherichia coli LSBJ. Biomass was pretreated using hot water at 160, 180, and 200°C for 5 and 10 minutes (15% solids), followed by disk refining. The sugar yields during enzymatic hydrolysis were found to improve with increasing temperature and the yields for hot water-disk refining pretreatment (HWDM) were higher compared to only hot water pretreatment at all conditions. The maximum glucose (56 g/L) and cellulose conversion (92%) were achieved for HWDM at 200°C for 10 minutes. The hydrolysate obtained was fermented at a sugar concentration of 20 g/L. The PHB inclusion and concentration of 48% and 1.8 g/L, respectively, were similar to those from pure sugars. A pH-controlled fermentation resulted in a near bi-fold increase in PHB yield (3.46 g/L).
Collapse
Affiliation(s)
- Anindita Paul
- Department of Chemical Engineering, SUNY College of Environmental Science & Forestry, Syracuse, NY 13210
| | - Linjing Jia
- Department of Chemical Engineering, SUNY College of Environmental Science & Forestry, Syracuse, NY 13210
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Chang G Yoo
- Department of Chemical Engineering, SUNY College of Environmental Science & Forestry, Syracuse, NY 13210
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, India
| | | | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science & Forestry, Syracuse, NY 13210.
| |
Collapse
|
6
|
Bourgade B, Humphreys CM, Millard J, Minton NP, Islam MA. Design, Analysis, and Implementation of a Novel Biochemical Pathway for Ethylene Glycol Production in Clostridium autoethanogenum. ACS Synth Biol 2022; 11:1790-1800. [PMID: 35543716 PMCID: PMC9127970 DOI: 10.1021/acssynbio.1c00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The platform chemical
ethylene glycol (EG) is used to manufacture
various commodity chemicals of industrial importance, but largely
remains synthesized from fossil fuels. Although several novel metabolic
pathways have been reported for its bioproduction in model organisms,
none has been reported for gas-fermenting, non-model acetogenic chassis
organisms. Here, we describe a novel, synthetic biochemical pathway
to convert acetate into EG in the industrially important gas-fermenting
acetogen,Clostridium autoethanogenum. We not only developed a computational workflow to design and analyze
hundreds of novel biochemical pathways for EG production but also
demonstrated a successful pathway construction in the chosen host.
The EG production was achieved using a two-plasmid system to bypass
unfeasible expression levels and potential toxic enzymatic interactions.
Although only a yield of 0.029 g EG/g fructose was achieved and therefore
requiring further strain engineering efforts to optimize the designed
strain, this work demonstrates an important proof-of-concept approach
to computationally design and experimentally implement fully synthetic
metabolic pathways in a metabolically highly specific, non-model host
organism.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| | - Christopher M. Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - James Millard
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - M. Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| |
Collapse
|
7
|
Shi LL, Zheng Y, Tan BW, Li ZJ. Establishment of a carbon-efficient xylulose cleavage pathway in Escherichia coli to metabolize xylose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
9
|
Huang J, Lin M, Liang S, Qin Q, Liao S, Lu B, Wang Q. Transcription Analysis of Recombinant Trichoderma reesei HJ-48 to Compare the Molecular Basis for Fermentation of Glucose and Xylose. J Microbiol Biotechnol 2020; 30:1467-1479. [PMID: 32699200 PMCID: PMC9745658 DOI: 10.4014/jmb.2004.04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Profiling the transcriptome changes involved in xylose metabolism by the fungus Trichoderma reesei allows for the identification of potential targets for ethanol production processing. In the present study, the transcriptome of T. reesei HJ-48 grown on xylose versus glucose was analyzed using nextgeneration sequencing technology. During xylose fermentation, numerous genes related to central metabolic pathways, including xylose reductase (XR) and xylitol dehydrogenase (XDH), were expressed at higher levels in T. reesei HJ-48. Notably, growth on xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways. In addition, increased expression of several sugar transporters was observed during xylose fermentation. This study provides a valuable dataset for further investigation of xylose fermentation and provides a deeper insight into the various genes involved in this process.
Collapse
Affiliation(s)
- Jun Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China,Corresponding author Phone: +86-0771-2503970 Fax: +86-0771-2503970 E-mail:
| | - Mei Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Shijie Liang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Qiurong Qin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Siming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| | - Qingyan Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, P.R. China
| |
Collapse
|
10
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
11
|
Promdonkoy P, Siripong W, Downes JJ, Tanapongpipat S, Runguphan W. Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae. AMB Express 2019; 9:160. [PMID: 31599368 PMCID: PMC6787123 DOI: 10.1186/s13568-019-0885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022] Open
Abstract
As the importance of reducing carbon emissions as a means to limit the serious effects of global climate change becomes apparent, synthetic biologists and metabolic engineers are looking to develop renewable sources for transportation fuels and petroleum-derived chemicals. In recent years, microbial production of high-energy fuels has emerged as an attractive alternative to the traditional production of transportation fuels. In particular, the Baker’s yeast Saccharomyces cerevisiae, a highly versatile microbial chassis, has been engineered to produce a wide array of biofuels. Nevertheless, a key limitation of S. cerevisiae is its inability to utilize xylose, the second most abundant sugar in lignocellulosic biomass, for both growth and chemical production. Therefore, the development of a robust S. cerevisiae strain that is able to use xylose is of great importance. Here, we engineered S. cerevisiae to efficiently utilize xylose as a carbon source and produce the advanced biofuel isobutanol. Specifically, we screened xylose reductase (XR) and xylose dehydrogenase (XDH) variants from different xylose-metabolizing yeast strains to identify the XR–XDH combination with the highest activity. Overexpression of the selected XR–XDH variants, a xylose-specific sugar transporter, xylulokinase, and isobutanol pathway enzymes in conjunction with the deletions of PHO13 and GRE3 resulted in an engineered strain that is capable of producing isobutanol at a titer of 48.4 ± 2.0 mg/L (yield of 7.0 mg/g d-xylose). This is a 36-fold increase from the previous report by Brat and Boles and, to our knowledge, is the highest isobutanol yield from d-xylose in a microbial system. We hope that our work will set the stage for an economic route for the production of advanced biofuel isobutanol and enable efficient utilization of lignocellulosic biomass.
Collapse
|
12
|
Li X, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol 2019; 57:56-65. [PMID: 30785001 DOI: 10.1016/j.copbio.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Energy security, environmental pollution, and economic development drive the development of alternatives to fossil fuels as an urgent global priority. Lignocellulosic biomass has the potential to contribute to meeting the demand for biofuel production via hydrolysis and fermentation of released sugars, such as glucose, xylose, and arabinose. Construction of robust cell factories requires introducing and rewiring of their metabolism to efficiently use all these sugars. Here, we review recent advances in re-constructing pathways for metabolism of pentoses, with special focus on xylose metabolism in the most widely used cell factories Saccharomyces cerevisiae and Escherichia coli. We also highlight engineering advanced biofuels-synthesis pathways and describes progress toward overcoming the challenges facing adoption of large-scale biofuel production.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Wallenberg Center for Protein Research, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
13
|
Salusjärvi L, Havukainen S, Koivistoinen O, Toivari M. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:2525-2535. [PMID: 30707252 PMCID: PMC6443609 DOI: 10.1007/s00253-019-09640-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Glycolic acid (GA) and ethylene glycol (EG) are versatile two-carbon organic chemicals used in multiple daily applications. GA and EG are currently produced by chemical synthesis, but their biotechnological production from renewable resources has received a substantial interest. Several different metabolic pathways by using genetically modified microorganisms, such as Escherichia coli, Corynebacterium glutamicum and yeast have been established for their production. As a result, the yield of GA and EG produced from sugars has been significantly improved. Here, we describe the recent advancement in metabolic engineering efforts focusing on metabolic pathways and engineering strategies used for GA and EG production.
Collapse
Affiliation(s)
- Laura Salusjärvi
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | - Sami Havukainen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Outi Koivistoinen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Mervi Toivari
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| |
Collapse
|
14
|
Uranukul B, Woolston BM, Fink GR, Stephanopoulos G. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab Eng 2018; 51:20-31. [PMID: 30268818 DOI: 10.1016/j.ymben.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimilation pathways for the synthesis of MEG. In the present study, we examined the suitability of Saccharomyces cerevisiae, a preferred organism for industrial applications, as platform for MEG biosynthesis. Based on combined genetic, biochemical and fermentation studies, we report evidence for the existence of an endogenous biosynthetic route for MEG production from D-xylose in S. cerevisiae which consists of phosphofructokinase and fructose-bisphosphate aldolase, the two key enzymes in the glycolytic pathway. Further metabolic engineering and process optimization yielded a strain capable of producing up to 4.0 g/L MEG, which is the highest titer reported in yeast to-date.
Collapse
Affiliation(s)
- Boonsom Uranukul
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
15
|
Kim D, Woo HM. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Appl Microbiol Biotechnol 2018; 102:9471-9480. [PMID: 30238140 DOI: 10.1007/s00253-018-9353-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
The goal of sustainable production of biochemicals and biofuels has driven the engineering of microbial cell as factories that convert low-value substrates to high-value products. Xylose is the second most abundant sugar substrate in lignocellulosic hydrolysates. We analyzed the mechanisms of xylose metabolism using genome sequencing data of 492 industrially relevant bacterial species in the mini-review. The analysis revealed the xylose isomerase and Weimberg pathways as the major routes across diverse routes of bacterial xylose metabolism. In addition, we discuss recent developments in metabolic engineering of xylose metabolism in industrial microorganisms. Genome-scale analyses have revealed xylose pathway-specific flux landscapes. Overall, a comprehensive understanding of bacterial xylose metabolism could be useful for the feasible development of microbial cell factories.
Collapse
Affiliation(s)
- Donghyuk Kim
- School of Energy and Chemical Engineering and School of Biological Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
Salusjärvi L, Toivari M, Vehkomäki ML, Koivistoinen O, Mojzita D, Niemelä K, Penttilä M, Ruohonen L. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2017; 101:8151-8163. [PMID: 29038973 DOI: 10.1007/s00253-017-8547-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 11/26/2022]
Abstract
The important platform chemicals ethylene glycol and glycolic acid were produced via the oxidative D-xylose pathway in the yeast Saccharomyces cerevisiae. The expression of genes encoding D-xylose dehydrogenase (XylB) and D-xylonate dehydratase (XylD) from Caulobacter crescentus and YagE or YjhH aldolase and aldehyde dehydrogenase AldA from Escherichia coli enabled glycolic acid production from D-xylose up to 150 mg/L. In strains expressing only xylB and xylD, 29 mg/L 2-keto-3-deoxyxylonic acid [(S)-4,5-dihydroxy-2-oxopentanoic acid] (2K3DXA) was produced and D-xylonic acid accumulated to ca. 9 g/L. A significant amount of D-xylonic acid (ca. 14%) was converted to 3-deoxypentonic acid (3DPA), and also, 3,4-dihydroxybutyric acid was formed. 2K3DXA was further converted to glycolaldehyde when genes encoding by either YagE or YjhH aldolase from E. coli were expressed. Reduction of glycolaldehyde to ethylene glycol by an endogenous aldo-keto reductase activity resulted further in accumulation of ethylene glycol of 14 mg/L. The possibility of simultaneous production of lactic and glycolic acids was evaluated by expression of gene encoding lactate dehydrogenase ldhL from Lactobacillus helveticus together with aldA. Interestingly, this increased the accumulation of glycolic acid to 1 g/L. The D-xylonate dehydratase activity in yeast was notably low, possibly due to inefficient Fe-S cluster synthesis in the yeast cytosol, and leading to D-xylonic acid accumulation. The dehydratase activity was significantly improved by targeting its expression to mitochondria or by altering the Fe-S cluster metabolism of the cells with FRA2 deletion.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Maija-Leena Vehkomäki
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Outi Koivistoinen
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Dominik Mojzita
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Klaus Niemelä
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|