1
|
Zheng K, Rush KW, Date SS, Johs A, Parks JM, Fleischhacker AS, Abernathy MJ, Sarangi R, Ragsdale SW. S-adenosyl-L-methionine is the unexpected methyl donor for the methylation of mercury by the membrane-associated HgcAB complex. Proc Natl Acad Sci U S A 2024; 121:e2408086121. [PMID: 39546574 PMCID: PMC11588087 DOI: 10.1073/pnas.2408086121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Mercury (Hg) is a heavy metal that exhibits high biological toxicity. Monomethylmercury and dimethylmercury are neurotoxins and a significant environmental concern as they bioaccumulate and biomagnify within the aquatic food web. Microbial Hg methylation involves two proteins, HgcA and HgcB. Here, we show that HgcA and HgcB can be heterologously coexpressed, and the HgcAB complex can be purified. We demonstrated that HgcA is a membrane-associated cobalamin-dependent methyltransferase and HgcB is a ferredoxin-like protein containing two [4Fe-4S] clusters. Further, spectroscopic and kinetic results demonstrate that S-adenosyl-L-methionine (SAM) donates the methyl group to Hg in a two-step reaction involving a methylcob(III)alamin intermediate including Co-thiolate ligation from a conserved Cys residue. Our findings uncover a biological role for SAM in microbial Hg methylation.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109-0606
| | - Katherine W. Rush
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109-0606
| | - Swapneeta S. Date
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6038
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6038
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6309
| | - Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109-0606
| | - Macon J. Abernathy
- Department of Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Ritimukta Sarangi
- Department of Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109-0606
| |
Collapse
|
2
|
Sitek P, Lodowski P, Jaworska M. Mechanism of Methyl Transfer Reaction between CH 3Co(dmgBF 2) 2py and PPh 3Ni(Triphos). Molecules 2024; 29:3335. [PMID: 39064913 PMCID: PMC11280430 DOI: 10.3390/molecules29143335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
DFT calculations were performed for the methyl group transfer reaction between CH3Co (dmgBF2)py and PPh3Ni(Triphos). The reaction mechanism and its energetics were investigated. This reaction is relevant to the catalytic mechanism of the enzyme acetyl coenzyme A synthase. BP86 and PBE functionals and dispersion corrections were used. It was found that intermolecular interactions are very important for this reaction. The influence of the solvent on the reaction was studied.
Collapse
Affiliation(s)
| | | | - Maria Jaworska
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland (P.L.)
| |
Collapse
|
3
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
4
|
Theoretical Studies of Acetyl-CoA Synthase Catalytic Mechanism. Catalysts 2022. [DOI: 10.3390/catal12020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase (ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a mechanism for the methylation reaction involving two–electron reduction and protonation on the proximal nickel atom of the reduced A-cluster is proposed.
Collapse
|
5
|
Reith L, Triana CA, Pazoki F, Amiri M, Nyman M, Patzke GR. Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. J Am Chem Soc 2021; 143:15022-15038. [PMID: 34499506 DOI: 10.1021/jacs.1c03375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein, we tackle two key open questions after decades of research into cobalt-assisted visible-light-driven water oxidation: What makes simple cobalt-based precipitates so highly active-and to what extent do we need Co-WOC design? Hence, we started from Co(NO3)2 to generate a precursor precipitate, which transforms into a highly active WOC during the photocatalytic process with a [Ru(bpy)3]2+/S2O82-/borate buffer standard assay that outperforms state of the art cobalt catalysts. The structural transformations of these nanosized Co catalysts were monitored with a wide range of characterization techniques. The results reveal that the precipitated catalyst does not fully change into an amorphous CoOx material but develops some crystalline features. The transition from the precipitate into a disordered Co3O4 material proceeds within ca. 1 min, followed by further transformation into highly active disordered CoOOH within the first 10 min. Furthermore, under noncatalytic conditions, the precursor directly transforms into CoOOH. Moreover, fast precipitation and isolation afford a highly active precatalyst with an exceptional O2 yield of 91% for water oxidation with the visible-light-driven [Ru(bpy)3]2+/S2O82- assay, which outperforms a wide range of carefully designed Co-containing WOCs. We thus demonstrate that high-performance cobalt-based OER catalysts indeed emerge effortlessly from a self-optimization process favoring the formation of Co(III) centers in all-octahedral environments. This paves the way to new low-maintenance flow chemistry OER processes.
Collapse
Affiliation(s)
- Lukas Reith
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Faezeh Pazoki
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Chemical Engineering Department, University of Tehran, District 6, 16th Azar St., Enghelab Sq., Tehran 1417935840, Iran
| | - Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
6
|
Polaczek J, Stochel G, Eldik R. Can Particulate Matter and Nano Metal Oxide Particles Affect the Redox Cycling of Nitrosylcobalamin in Weakly Acidic Aqueous Solution? Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Justyna Polaczek
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Grażyna Stochel
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Rudi Eldik
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Department of Chemistry and Pharmacy University of Erlangen-Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
7
|
Braley SE, Xie J, Losovyj Y, Smith JM. Graphite Conjugation of a Macrocyclic Cobalt Complex Enhances Nitrite Electroreduction to Ammonia. J Am Chem Soc 2021; 143:7203-7208. [PMID: 33939918 DOI: 10.1021/jacs.1c03427] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work reports on the generation of a graphite-conjugated diimine macrocyclic Co catalyst (GCC-CoDIM) that is assembled at o-quinone edge defects on graphitic carbon electrodes. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy confirm the existence of a new Co surface species with a coordination environment that is the same as that of the molecular analogue, [Co(DIM)Br2]+. GCC-CoDIM selectively reduces nitrite to ammonium with quantitative Faradaic efficiency and at a rate that approaches enzymatic catalysis. Preliminary mechanistic investigations suggest that the increased rate is accompanied by a change in mechanism from the molecular analogue. These results provide a template for creating macrocycle-based electrocatalysts based on first-row transition metals conjugated to an extreme redox-active ligand.
Collapse
Affiliation(s)
- Sarah E Braley
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Jiaze Xie
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
8
|
Garrido-Barros P, Moonshiram D, Gil-Sepulcre M, Pelosin P, Gimbert-Suriñach C, Benet-Buchholz J, Llobet A. Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. J Am Chem Soc 2020; 142:17434-17446. [PMID: 32935982 DOI: 10.1021/jacs.0c06515] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.
Collapse
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDE A Nanociencia), Calle Faraday, 9, 28049 Madrid, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Primavera Pelosin
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Li Z, Mascarenhas R, Twahir UT, Kallon A, Deb A, Yaw M, Penner-Hahn J, Koutmos M, Warncke K, Banerjee R. An Interprotein Co-S Coordination Complex in the B 12-Trafficking Pathway. J Am Chem Soc 2020; 142:16334-16345. [PMID: 32871076 DOI: 10.1021/jacs.0c06590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The CblC and CblD chaperones are involved in early steps in the cobalamin trafficking pathway. Cobalamin derivatives entering the cytoplasm are converted by CblC to a common cob(II)alamin intermediate via glutathione-dependent alkyltransferase or reductive elimination activities. Cob(II)alamin is subsequently converted to one of two biologically active alkylcobalamins by downstream chaperones. The function of CblD has been elusive although it is known to form a complex with CblC under certain conditions. Here, we report that CblD provides a sulfur ligand to cob(II)alamin bound to CblC, forming an interprotein coordination complex that rapidly oxidizes to thiolato-cob(III)alamin. Cysteine scanning mutagenesis and EPR spectroscopy identified Cys-261 on CblD as the sulfur donor. The unusual interprotein Co-S bond was characterized by X-ray absorption spectroscopy and visualized in the crystal structure of the human CblD thiolato-cob(III)alamin complex. Our study provides insights into how cobalamin coordination chemistry could be utilized for cofactor translocation in the trafficking pathway.
Collapse
Affiliation(s)
- Zhu Li
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Umar T Twahir
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, United States
| | - Albert Kallon
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - Aniruddha Deb
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| | - James Penner-Hahn
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Markos Koutmos
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
10
|
Huening KA, Jiang R, Krzycki JA. Kinetic and substrate complex characterization of RamA, a corrinoid protein reductive activase from Methanosarcina barkeri. FEMS Microbiol Lett 2020; 367:5896951. [PMID: 32840570 DOI: 10.1093/femsle/fnaa128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
In microbial corrinoid-dependent methyltransferase systems, adventitious Co(I)-corrinoid oxidation halts catalysis and necessitates repair by ATP-dependent reductive activases. RamA, an activase with a C-terminal ferredoxin domain with two [4Fe-4S] clusters from methanogenic archaea, has been far less studied than the bacterial activases bearing an N-terminal ferredoxin domain with one [2Fe-2S] cluster. These differences suggest RamA might prove to have other distinctive characteristics. Here, we examine RamA kinetics and the stoichiometry of the corrinoid protein:RamA complex. Like bacterial activases, K+ stimulates RamA. Potassium stimulation had been questioned due to differences in the primary structure of bacterial and methanogen activases. Unlike one bacterial activase, ATP is not inhibitory allowing the first determination of apparent kinetic parameters for any corrinoid activase. Unlike bacterial activases, a single RamA monomer complexes a single corrinoid protein monomer. Alanine replacement of a RamA serine residue corresponding to the serine of one bacterial activase which ligates the corrinoid cobalt during complex formation led to only moderate changes in the kinetics of RamA. These results reveal new differences in the two types of corrinoid activases, and provide direct evidence for the proposal that corrinoid activases act as catalytic monomers, unlike other enzymes that couple ATP hydrolysis to difficult reductions.
Collapse
Affiliation(s)
- Katherine A Huening
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Ruisheng Jiang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph A Krzycki
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Chen WT, Hsu CW, Lee JF, Pao CW, Hsu IJ. Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl. ACS OMEGA 2020; 5:4991-5000. [PMID: 32201785 PMCID: PMC7081404 DOI: 10.1021/acsomega.9b03887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe-C(σ*) and Fe(1s) → Fe-C(π*) transitions, respectively. When the geometry transformed from D 3h to C 4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal-CO or similar compounds with π acceptor ligandlike metal-CN complexes.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Che-Wei Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Jyh-Fu Lee
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
- Research
and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
- E-mail: .
Tel: +886-2-27712171#2420
| |
Collapse
|
12
|
Miller NA, Michocki LB, Konar A, Alonso-Mori R, Deb A, Glownia JM, Sofferman DL, Song S, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B 12. J Phys Chem B 2020; 124:199-209. [PMID: 31850761 DOI: 10.1021/acs.jpcb.9b09286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Arkaprabha Konar
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Danielle L Sofferman
- Program in Applied Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
13
|
Rao G, Alwan KB, Blackburn NJ, Britt RD. Incorporation of Ni 2+, Co 2+, and Selenocysteine into the Auxiliary Fe-S Cluster of the Radical SAM Enzyme HydG. Inorg Chem 2019; 58:12601-12608. [PMID: 31539235 DOI: 10.1021/acs.inorgchem.9b01293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The radical SAM enzyme HydG generates CO- and CN--containing Fe complexes that are involved in the bioassembly of the [FeFe] hydrogenase active cofactor, the H-cluster. HydG contains a unique 5Fe-4S cluster in which the fifth "dangler" Fe and the coordinating cysteine molecule have both been shown to be essential for its function. Here, we demonstrate that this dangler Fe can be replaced with Ni2+ or Co2+ and that the cysteine can be replaced with selenocysteine. The resulting HydG variants were characterized by electron paramagnetic resonance and X-ray absorption spectroscopy, as well as subjected to a Tyr cleavage assay. Both Ni2+ and Co2+ are shown to be exchange-coupled to the 4Fe-4S cluster, and selenocysteine substitution does not alter the electronic structure significantly. XAS data provide details of the coordination environments near the Ni, Co, and Se atoms and support a close interaction of the dangler metal with the FeS cluster via an asymmetric SeCys bridge. Finally, while we were unable to observe the formation of novel organometallic species for the Ni2+ and Co2+ variants, the selenocysteine variant retains the activity of wild type HydG in forming [Fe(CO)x(CN)y] species. Our results provide more insights into the unique auxiliary cluster in HydG and expand the scope of artificially generated Fe-S clusters with heteroatoms.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Katherine B Alwan
- Department of Chemical Physiology and Biochemistry , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
14
|
Elucidating the mechanism of cob(I)alamin mediated methylation reactions by alkyl halides: SN2 or radical mechanism? J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abstract
Chlorinated alkanes were heavily used in a wide range of industrial applications including as degreasers, paint strippers, chemical intermediates, and soil fumigants. These compounds are an environmental concern due to the adverse health effects associated with them and have been detected in environmental matrices including soils and groundwater. Chlorinated alkanes are recalcitrant, and current remediation methods that employ zero-valent iron (ZVI) are unable to directly dehalogenate these compounds, limiting the available approaches for in situ remediation of these widely utilized chemicals. This study employed a novel approach for the remediation of 1,2,3-trichloropropane (TCP), 1,2-dichloropropane (1,2-DCP), 1,3-dichloropropane (1,3-DCP), 1-chloropropane (1-CP), and 1,2-dichloroethane (1,2-DCA) in the presence of ZVI and vitamin B12, a naturally occurring electron mediator. Batch reactions were performed in order to determine a kinetic model for the associated degradation mechanisms. Dechlorination byproducts were confirmed through gas chromatography-mass spectrometry (GC-MS) coupled to a purge and trap. Free chloride was quantified by ion chromatography (IC) utilizing suppressed conductivity detection. In the absence of vitamin B12, reductive dechlorination of chlorinated alkanes was observed to not occur when exposed to only reactive ZVI particles (<5 μm). However, in the presence of ZVI combined with vitamin B12, complete reductive dechlorination was observed and followed a pseudo-first-order reaction.
Collapse
|
16
|
Goetzl S, Teutloff C, Werther T, Hennig SE, Jeoung JH, Bittl R, Dobbek H. Protein Dynamics in the Reductive Activation of a B12-Containing Enzyme. Biochemistry 2017; 56:5496-5502. [DOI: 10.1021/acs.biochem.7b00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Goetzl
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tobias Werther
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra E. Hennig
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jae-Hun Jeoung
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Bittl
- Fachbereich
Physik, Freie Universität Berlin, Berlin, Germany
| | - Holger Dobbek
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Schrapers P, Ilina J, Gregg CM, Mebs S, Jeoung JH, Dau H, Dobbek H, Haumann M. Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy. PLoS One 2017; 12:e0171039. [PMID: 28178309 PMCID: PMC5298270 DOI: 10.1371/journal.pone.0171039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely.
Collapse
Affiliation(s)
- Peer Schrapers
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Julia Ilina
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina M. Gregg
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Jae-Hun Jeoung
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology/Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|