1
|
Li W, Baehr S, Marasco M, Reyes L, Brister D, Pikaard CS, Gout JF, Vermulst M, Lynch M. A Narrow Range of Transcript-error Rates Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.02.538944. [PMID: 39868080 PMCID: PMC11761650 DOI: 10.1101/2023.05.02.538944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed. Here, we present a genome-wide analysis of transcript-error rates across the Tree of Life using a modified rolling-circle sequencing method, revealing that the range in error rates is remarkably narrow across diverse species. Transcript errors tend to be randomly distributed, with little evidence supporting local control of error rates associated with gene-expression levels. A majority of transcript errors result in missense errors if translated, and as with a fraction of nonsense transcript errors, these are underrepresented relative to random expectations, suggesting the existence of mechanisms for purging some such errors. To quantitatively understand how natural selection and random genetic drift might shape transcript-error rates across species, we present a model based on cell biology and population genetics, incorporating information on cell volume, proteome size, average degree of exposure of individual errors, and effective population size. However, while this model provides a framework for understanding the evolution of this highly conserved trait, as currently structured it explains only 20% of the variation in the data, suggesting a need for further theoretical work in this area.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305
| | - Stephan Baehr
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michelle Marasco
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Lauren Reyes
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Danielle Brister
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Craig S Pikaard
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biological Sciences, Mississippi State, MS 39762
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
2
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Fuller KB, Jacobs RQ, Carter ZI, Cuny ZG, Schneider DA, Lucius AL. Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation. Biophys Chem 2024; 312:107281. [PMID: 38889653 PMCID: PMC11260521 DOI: 10.1016/j.bpc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3' end was fastest when the 3' terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA
| | | | - Zachary G Cuny
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
5
|
Qian J, Collette D, Finzi L, Dunlap D. Detecting DNA Loops Using Tethered Particle Motion. Methods Mol Biol 2024; 2694:451-466. [PMID: 37824017 PMCID: PMC10906717 DOI: 10.1007/978-1-0716-3377-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The range of motion of a micron-sized bead tethered by a single polymer provides a dynamic readout of the effective length of the polymer. The excursions of the bead may reflect the intrinsic flexibility and/or topology of the polymer as well as changes due to the action activity of ligands that bind the polymer. This is a simple yet powerful experimental approach to investigate such interactions between DNA and proteins as demonstrated by experiments with the lac repressor. This protein forms a stable, tetrameric oligomer with two binding sites and can produce a loop of DNA between recognition sites separated along the length of a DNA molecule.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Dylan Collette
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA, USA
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Ingram ZM, Schneider DA, Lucius AL. Transient-state kinetic analysis of multi-nucleotide addition catalyzed by RNA polymerase I. Biophys J 2021; 120:4378-4390. [PMID: 34509510 DOI: 10.1016/j.bpj.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
RNA polymerases execute the first step in gene expression: transcription of DNA into RNA. Eukaryotes, unlike prokaryotes, express at least three specialized nuclear multisubunit RNA polymerases (Pol I, Pol II, and Pol III). RNA polymerase I (Pol I) synthesizes the most abundant RNA, ribosomal RNA. Nearly 60% of total transcription is devoted to ribosomal RNA synthesis, making it one of the cell's most energy consuming tasks. While a kinetic mechanism for nucleotide addition catalyzed by Pol I has been reported, it remains unclear to what degree different nucleotide sequences impact the incorporation rate constants. Furthermore, it is currently unknown if the previous investigation of a single-nucleotide incorporation was sensitive to the translocation step. Here, we show that Pol I exhibits considerable variability in both kmax and K1/2values using an in vitro multi-NTP incorporation assay measuring AMP and GMP incorporations. We found the first two observed nucleotide incorporations exhibited faster kmax-values (∼200 s-1) compared with the remaining seven positions (∼60 s-1). Additionally, the average K1/2 for ATP incorporation was found to be approximately threefold higher compared with GTP, suggesting Pol I has a tighter affinity for GTP compared with ATP. Our results demonstrate that Pol I exhibits significant variability in the observed rate constant describing each nucleotide incorporation. Understanding of the differences between the Pol enzymes will provide insight on the evolutionary pressures that led to their specialized roles. Therefore, the findings resulting from this work are critically important for comparisons with other polymerases across all domains of life.
Collapse
Affiliation(s)
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| | | |
Collapse
|
7
|
Qian J, Xu W, Dunlap D, Finzi L. Single-molecule insights into torsion and roadblocks in bacterial transcript elongation. Transcription 2021; 12:219-231. [PMID: 34719335 PMCID: PMC8632135 DOI: 10.1080/21541264.2021.1997315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
During transcription, RNA polymerase (RNAP) translocates along the helical template DNA while maintaining high transcriptional fidelity. However, all genomes are dynamically twisted, writhed, and decorated by bound proteins and motor enzymes. In prokaryotes, proteins bound to DNA, specifically or not, frequently compact DNA into conformations that may silence genes by obstructing RNAP. Collision of RNAPs with these architectural proteins, may result in RNAP stalling and/or displacement of the protein roadblock. It is important to understand how rapidly transcribing RNAPs operate under different levels of supercoiling or in the presence of roadblocks. Given the broad range of asynchronous dynamics exhibited by transcriptional complexes, single-molecule assays, such as atomic force microscopy, fluorescence detection, optical and magnetic tweezers, etc. are well suited for detecting and quantifying activity with adequate spatial and temporal resolution. Here, we summarize current understanding of the effects of torsion and roadblocks on prokaryotic transcription, with a focus on single-molecule assays that provide real-time detection and readout.
Collapse
Affiliation(s)
- Jin Qian
- Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
8
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Nir G, Chetrit E, Vivante A, Garini Y, Berkovich R. The role of near-wall drag effects in the dynamics of tethered DNA under shear flow. SOFT MATTER 2018; 14:2219-2226. [PMID: 29451293 DOI: 10.1039/c7sm01328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We utilized single-molecule tethered particle motion (TPM) tracking, optimized for studying the behavior of short (0.922 μm) dsDNA molecules under shear flow conditions, in the proximity of a wall (surface). These experiments track the individual trajectories through a gold nanobead (40 nm in radius), attached to the loose end of the DNA molecules. Under such circumstances, local interactions with the wall become more pronounced, manifested through hydrodynamic interactions. To elucidate the mechanical mechanism that affects the statistics of the molecular trajectories of the tethered molecules, we estimate the resting diffusion coefficient of our system. Using this value and our measured data, we calculate the orthogonal distance of the extended DNA molecules from the surface. This calculation considers the hydrodynamic drag effect that emerges from the proximity of the molecule to the surface, using the Faxén correction factors. Our finding enables the construction of a scenario according to which the tension along the chain builds up with the applied shear force, driving the loose end of the DNA molecule away from the wall. With the extension from the wall, the characteristic times of the system decrease by three orders of magnitude, while the drag coefficients decay to a plateau value that indicates that the molecule still experiences hydrodynamic effects due to its proximity to the wall.
Collapse
Affiliation(s)
- Guy Nir
- Dep. of Genetics, Harvard Medical School, Boston, MA 02115, USA. and Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Einat Chetrit
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Anat Vivante
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yuval Garini
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronen Berkovich
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel. and The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Kovari DT, Yan Y, Finzi L, Dunlap D. Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors. Methods Mol Biol 2018; 1665:317-340. [PMID: 28940077 DOI: 10.1007/978-1-4939-7271-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tethered Particle Motion (TPM) is a versatile in vitro technique for monitoring the conformations a linear macromolecule, such as DNA, can exhibit. The technique involves monitoring the diffusive motion of a particle anchored to a fixed point via the macromolecule of interest, which acts as a tether. In this chapter, we provide an overview of TPM, review the fundamental principles that determine the accuracy with which effective tether lengths can be used to distinguish different tether conformations, present software tools that assist in capturing and analyzing TPM data, and provide a protocol which uses TPM to characterize lac repressor-induced DNA looping. Critical to any TPM assay is the understanding of the timescale over which the diffusive motion of the particle must be observed to accurately distinguish tether conformations. Approximating the tether as a Hookean spring, we show how to estimate the diffusion timescale and discuss how it relates to the confidence with which tether conformations can be distinguished. Applying those estimates to a lac repressor titration assay, we describe how to perform a TPM experiment. We also provide graphically driven software which can be used to speed up data collection and analysis. Lastly, we detail how TPM data from the titration assay can be used to calculate relevant molecular descriptors such as the J factor for DNA looping and lac repressor-operator dissociation constants. While the included protocol is geared toward studying DNA looping, the technique, fundamental principles, and analytical methods are more general and can be adapted to a wide variety of molecular systems.
Collapse
Affiliation(s)
- Daniel T Kovari
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|