1
|
Liu RJ, Li M, Zhu Q, Liu HY, Zhang XX, Han XY, Yu MJ, Zhou JW, Han CY. Development and Characterization of a Hydrogel Containing Chloramphenicol-Loaded Binary Ethosomes for Effective Transdermal Permeation and Treatment Acne in Rat Model. Int J Nanomedicine 2025; 20:1697-1715. [PMID: 39931531 PMCID: PMC11809363 DOI: 10.2147/ijn.s476937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Acne is a serious disfiguring follicular sebaceous gland disorder that negatively affects patients' quality of life and self-image. Chloramphenicol (CAM) is effective against Propionibacterium acnes and Staphylococcus aureus which cause acne, often used as a hospital preparation for acne treatment. However, because of its toxicity and poor water solubility, its use has been restricted. To overcome these limitations, the study focused on developing CAM-loaded binary ethosomes (CAM-BE) and incorporating them into a hydrogel system for transdermal delivery. Methods CAM-BE were prepared and characterized. Following incorporation of the selected formulation into the hydrogel, the formulation's skin-interaction was evaluated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and confocal laser scanning microscopy (CLSM). Furthermore, a rat ear acne model was used to evaluate the formulation's in vivo anti-inflammatory efficacy and ex vivo skin permeability. Results The optimal formulation contained ethanol/propylene glycol ratios of 3:7 (w/w), exhibited particle size was 97.68 ± 4.9 nm, zeta-potential was -23.5 ± 1.3 mV, and encapsulation efficiency was 60.36 ± 2.12%. The BE hydrogel that was created showed persistent drug release. Additionally, it demonstrated an enhanced flow of 4.374 ± 0.12 μg/cm2/hour, permeability coefficient was 3.65 ± 0.09 cm/h×10-3, and apparent skin deposition was 17.77 ± 1.13 μg/cm2. CLSM and ATR-FTIR confirm that loading CAM into a binary ethosomes enables drugs to pass more easily through the stratum corneum. In vivo testing and histopathological analysis demonstrated that the CAM-BE hydrogel significantly inhibited swelling in the rat auricle, compared to both the free CAM hydrogel and adapalene hydrogel. Conclusion With their strong anti-inflammatory properties and improved skin penetration, binary ethosomes could be a viable new CAM delivery method. The new formulation was therefore seen as quite promising.
Collapse
Affiliation(s)
- Run jia Liu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Miao Li
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Qian Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Hui ying Liu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Xing xiu Zhang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Xiang yuan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Meng jun Yu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Jian wen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Cui yan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar, People’s Republic of China
| |
Collapse
|
2
|
Martinez-Gutierrez A, Sendros J, Noya T, González MC. Novel transethosome coencapsulated combination for acne treatment: in-vitro efficacy and ex-vivo biodistribution studies. Ital J Dermatol Venerol 2025; 160:7-11. [PMID: 40026043 DOI: 10.23736/s2784-8671.24.07982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BACKGROUND Acne vulgaris is a skin condition affecting approximately 85% of young adults. It is influenced by androgens and primarily occurs in the pilosebaceous unit, where inflammation and obstruction happen. Hyperseborrhea and hyperkeratinization lead to increased levels of fatty acids and necrotic keratinocytes, promoting the proliferation of C. acnes phylotype IA1. METHODS Here, the in-vitro efficacy of a novel combination on the main processes involved in acne was studied. Furthermore, the combination was coencapsulated in transethosomes to target the pilosebaceous unit, and the biodistribution was analyzed ex vivo by fluorescence microscopy. RESULTS The combination of compounds reduced inflammatory markers levels, sebum production and 5α-Reductase levels while it induced autophagy and FOXO1 nuclear levels in sebocytes. The compounds coencapsulated in transethosomes reached the pilosebaceous unit as proven by the ex vivo analysis. CONCLUSIONS The proposed combination of compounds is a promising approach to be included in topical products for the treatment of acne vulgaris.
Collapse
Affiliation(s)
| | - Javier Sendros
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| | - Teresa Noya
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| | - Mari C González
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| |
Collapse
|
3
|
Kobryń J, Demski P, Raszewski B, Zięba T, Musiał W. Effect of Co-Solvents, Modified Starch and Physical Parameters on the Solubility and Release Rate of Cryptotanshinone from Alcohologels. Molecules 2024; 29:5877. [PMID: 39769966 PMCID: PMC11678525 DOI: 10.3390/molecules29245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: The aim of the work was to investigate the influence of selected physico-chemical factors on the solubility and release rate of CT (cryptotanshinone) in alcohologels. (2) Methods: The alcohologels of methylcellulose (MC), hydroksyethylcellulose (HEC), polyacrylic acid (PA) and polyacrylic acid crosspolymer (PACP) with CT were prepared and/or doped with native potato starch (SN) and modified citrate starches (SM2.5 and SM10). The analytical methods included evaluation of CT release profiles, Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and electrospray ionization mass spectrometry (ESI-MS), and scanning electron microscope (SEM) images were performed. (3) Results: The release and decomposition kinetics of CT in relation to the phosphate buffer solution (PBS) and methanol were observed. The amount of cryptotanshinone (CT) released into PBS was significantly lower (2.5%) compared to its release into methanol, where 22.5% of the CT was released into the model medium. The addition of SM2.5 to the alcohologel significantly increased the CT content to 70% in the alcohologel preparation containing NaOH (40%), and this enhanced stability was maintained for up to two months. The ATR-FTIR exhibited interactions between PA and 2-amino-2-methyl-1,3-propanediol (AMPD) as well as between PA and NaOH in case of the alcohologels. Moreover, it indicated the interaction between CT and NaOH. PXRD diffractograms confirmed the FTIR study. (4) Conclusions: The study observed the influence of a number of factors on the solubility and release rate of CT, as: alkalizers and their concentration, SM2.5 addition. The transition of CT in the presence of NaOH to the tanshinone V sodium (T-V sodium) form was suspected.
Collapse
Affiliation(s)
- Justyna Kobryń
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Patryk Demski
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Bartosz Raszewski
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| |
Collapse
|
4
|
Lei Y, Jiang W, Peng C, Wu D, Wu J, Xu Y, Yan H, Xia X. Advances in polymeric nano-delivery systems targeting hair follicles for the treatment of acne. Drug Deliv 2024; 31:2372269. [PMID: 38956885 PMCID: PMC11225637 DOI: 10.1080/10717544.2024.2372269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.
Collapse
Affiliation(s)
- Yujing Lei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wanting Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Cheng Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Donghai Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiling Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Mahmoud A, Rady M, Abdel-Halim M, El-Shenawy BM, Mansour S. Transdermal Delivery of Tofacitinib Citrate via Mannose-Decorated Transferosomes Loaded with Tofacitinib Citrate in Arthritic Joints. Mol Pharm 2024. [PMID: 39562501 DOI: 10.1021/acs.molpharmaceut.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Transdermal drug delivery systems are a promising option for the treatment of rheumatoid arthritis (RA) because they can lower systemic adverse effects of immunosuppressants. Janus kinase (JAK) inhibitors were found to be effective for the treatment of RA by inhibiting the JAK-STAT pathway and preventing autoimmune joint destruction. The aim of this study is to deliver tofacitinib (a JAK 1 and 3 inhibitor) through mannose-decorated transferosomes (MDTs) directly to inflamed joints. Transferosomes are composed of phospholipids, Cremophor A25, PEG400, Labrafac lipophile, and oleic acid to enhance the permeation of tofacitinib and control nanovesicle size (∼70-200 nm). Permeation through rat skin was evaluated, where the skin permeation of MDTs (Q24: 38.8 ± 9.82 μg/cm2) and flux (0.5311 ± 0.072 μg/cm2/h) were significantly greater than those of the uncoated transferosomes (Q24 of T1: 1.522 ± 0.329 μg/cm2, Q24 of T2: 3.5002 ± 0.998 μg/cm2, and Q24 of T3: 18.226 ± 5.25 μg/cm2). In addition, MDTs seem to permeate the skin intact, as shown by the transmission electron microscopy (TEM) images of the recipient buffer removed from the Franz diffusion cell. A histopathology assay was performed during the in vivo evaluation of MDTs in an arthritic rat model, in which, significantly less inflammation was observed when MDTs were applied directly to the joint compared to when applied to the dorsal skin and untreated arthritic joints. Furthermore, significantly lower tumor necrosis factor-α (TNFα), IL-6, and IL-1β levels (P < 0.05) were detected by enzyme-linked immunosorbent assay (ELISA) in homogenates of the joints treated with MDTs than in untreated arthritic joints. In conclusion, this study proposed effective MDTs that could deliver tofacitinib directly to inflamed joints possibly by targeting the macrophages circulating in the proximity of the site of inflammation.
Collapse
Affiliation(s)
- Alaa Mahmoud
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Mai Rady
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital 4762030, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo 11835, Egypt
| | - Basma M El-Shenawy
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Samar Mansour
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
- Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital 4762030, Egypt
| |
Collapse
|
6
|
Zeng Q, Chen H, Wang Z, Guo Y, Wu Y, Hu Y, Liang P, Zheng Z, Liang T, Zhai D, Guo Y, Liu L, Shen C, Jiang C, Shen Q, Yi Y, Liu Q. Carrier-free cryptotanshinone-peptide conjugates self-assembled nanoparticles: An efficient and low-risk strategy for acne vulgaris. Asian J Pharm Sci 2024; 19:100946. [PMID: 39246508 PMCID: PMC11374989 DOI: 10.1016/j.ajps.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 09/10/2024] Open
Abstract
Acne vulgaris ranks as the second most prevalent dermatological condition worldwide, and there are still insufficient safe and reliable drugs to treat it. Cryptotanshinone (CTS), a bioactive compound derived from traditional Chinese medicine Salvia miltiorrhiza, has shown promise for treating acne vulgaris due to its broad-spectrum antimicrobial and significant anti-inflammatory properties. Nevertheless, its local application is hindered by its low solubility and poor skin permeability. To overcome these challenges, a carrier-free pure drug self-assembled nanosystem is employed, which can specifically modify drug molecules based on the disease type and microenvironment, offering a potential for more effective treatment. We designed and synthesized three distinct structures of cationic CTS-peptide conjugates, creating self-assembled nanoparticles. This study has explored their self-assembly behavior, skin permeation, cellular uptake, and both in vitro and in vivo anti-acne effects. Molecular dynamics simulations revealed these nanoparticles form through intermolecular hydrogen bonding and π-π stacking interactions. Notably, self-assembled nanoparticles demonstrated enhanced bioavailability with higher skin permeation and cellular uptake rates. Furthermore, the nanoparticles exhibited superior anti-acne effects compared to the parent drug, attributed to heightened antimicrobial activity and significant downregulation of the MAPK/NF-κB pathway, leading to reduced expression of pro-inflammatory factors including TNF-α, IL-1β and IL-8. In summary, the carrier-free self-assembled nanoparticles based on CTS-peptide conjugate effectively address the issue of poor skin bioavailability, offering a promising new approach for acne treatment.
Collapse
Affiliation(s)
- Quanfu Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaling Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
7
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
8
|
Shree D, Patra CN, Sahoo BM. Novel Herbal Nanocarriers for Treatment of Dermatological Disorders. Pharm Nanotechnol 2022; 10:246-256. [PMID: 35733305 DOI: 10.2174/2211738510666220622123019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. METHODS In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. CONCLUSION Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| |
Collapse
|
9
|
Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jafari A, Daneshamouz S, Ghasemiyeh P, Mohammadi-Samani S. Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization. J Liposome Res 2022; 33:34-52. [PMID: 35695714 DOI: 10.1080/08982104.2022.2085742] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transdermal drug delivery systems (TDDSs) have gained substantial attention during the last decade. TDDS are versatile delivery systems in which active components are delivered to skin for local effects or systemic delivery of active pharmaceutical through the skin. Overcoming stratum corneum is the most challenging step of delivering drugs through the skin. Lipid-based vesicular delivery systems due to the capability of the delivery of both hydrophilic and hydrophobic drugs are becoming more popular during the recent years. Ethosomes are innovative, biocompatible, biodegradable and non-toxic form of lipid-based vesicles that efficiently enable to entrap drugs of various physicochemical properties. These are other forms of liposome which contain high amounts of ethanol in their structure that enabling ethosomes to efficiently penetrate through deeper layers of skin. Ethosomes have various compositions based on their type but are mainly composed of phospholipids, ethanol, water and the active components. Ethosomes are easily manufactured and they are superior compared to liposomes in terms of different aspects due to the presence of ethanol. The purpose of this review is to thoroughly focus on various aspects of ethosomes, including mechanism of penetration, advantages and disadvantages, characterisation and applications.
Collapse
Affiliation(s)
- Atoosa Jafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Yücel Ç, Şeker Karatoprak G, Yalçıntaş S, Eren Böncü T. Ethosomal (-)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:491-502. [PMID: 35707628 PMCID: PMC9174841 DOI: 10.3762/bjnano.13.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Controlled release systems containing natural compounds have been successfully applied in cosmetics as antiaging products to enhance the penetration of active compounds through the skin. In this study, we aimed to develop novel ethosomal formulations containing a potent antioxidant, epigallocatechin-3-gallate (EGCG), and to evaluate their potential for use in cosmetics by determining their antioxidant and antiaging effects. Ethosomes (ETHs) were prepared via mechanical dispersion and characterized in vitro in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency percentage (EE%), and in vitro release. The best ETH formulation was used to prepare the ethosome-based gel (ETHG) by using Carbopol 980 as a gelling agent at a ratio of 1:1 (v/v). The gel formulation was evaluated regarding organoleptic properties, pH values, and viscosity. Stability studies were conducted for three months and changes in characterization parameters and residual EGCG content of ETHs were examined. Besides, for ETHG, organoleptic properties, pH values (every two weeks), and viscosity (first and twelfth week) were determined for three months. The 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to test the cytotoxicity of the formulations and different EGCG solutions on the L929 cell line. The cell permeation properties and inhibitory effects of ETHs and ETHGs on collagenase and elastase enzymes were investigated compared to those of the solution form. Within the scope of antioxidant activity studies, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) radical scavenging and β-carotene/linoleic acid co-oxidation inhibitory effects were carried out. The optimized EGCG-loaded ETHs (F3) were within the nanoscale range (238 ± 1.10 nm). The highest encapsulation efficiency and in vitro release values were 51.7 ± 1.15% and 50.8 ± 1.70%, respectively. The ETHG was successfully formulated with F3-coded ETHs and the cytotoxicity test revealed that the formulations and the EGCG solution at different concentrations were nontoxic. In terms of cell permeability, enzyme inhibition, and antioxidant activity, the ethosomal formulations yielded better results compared to the EGCG solution. It was observed that the formulations had a long-term effect due to the stability of EGCG. The findings of the study underline the potential of antioxidant and antiaging effects of the developed ethosomal formulations for use in the cosmetic field.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, 38280 Kayseri, Turkey
| | - Gökçe Şeker Karatoprak
- Faculty of Pharmacy, Department of Pharmacognosy, Erciyes University, 38280 Kayseri, Turkey
| | - Sena Yalçıntaş
- Erciyes University, Ziya Eren Drug Application and Research Center, Kayseri, Turkey
| | - Tuğba Eren Böncü
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
12
|
Kumari S, Goyal A, Sönmez Gürer E, Algın Yapar E, Garg M, Sood M, Sindhu RK. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022; 14:pharmaceutics14051091. [PMID: 35631677 PMCID: PMC9146286 DOI: 10.3390/pharmaceutics14051091] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based medicines have received a lot of attention in recent years. Such medicines have been employed to treat medical conditions since ancient times, and in those times only the observed symptoms were used to determine dose accuracy, dose efficacy, and therapy. Rather than novel formulations, the current research work on plant-based medicines has mostly concentrated on medicinal active phytoconstituents. In the past recent decades, however, researchers have made significant progress in developing "new drug delivery systems" (NDDS) to enhance therapeutic efficacy and reduce unwanted effects of bioactive compounds. Nanocapsules, polymer micelles, liposomes, nanogels, phytosomes, nano-emulsions, transferosomes, microspheres, ethosomes, injectable hydrogels, polymeric nanoparticles, dendrimers, and other innovative therapeutic formulations have all been created using bioactive compounds and plant extracts. The novel formulations can improve solubility, therapeutic efficacy, bioavailability, stability, tissue distribution, protection from physical and chemical damage, and prolonged and targeted administration, to name a few. The current study summarizes existing research and the development of new formulations, with a focus on herbal bioactive components.
Collapse
Affiliation(s)
- Sapna Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Meenakshi Sood
- Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
- Correspondence:
| |
Collapse
|
13
|
Gu Y, Bian Q, Zhou Y, Huang Q, Gao J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci 2022; 17:333-352. [PMID: 35782323 PMCID: PMC9237597 DOI: 10.1016/j.ajps.2022.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The hair follicle is not only a critical penetration route in percutaneous absorption but also has been recognized to be a target for hair follicle-associated disorders, such as androgenetic alopecia (AGA) and acne vulgaris. Hair follicle-targeting drug delivery systems allow for controlled drug release and enhance therapeutic efficacy with minimal side effects, exerting a promising method for the management of hair follicle-associated dysfunctions. Therefore, they have obtained much attention in several fields of research in recent years. This review gives an overview of potential follicle-targeting drug delivery formulations currently applied based on the particularities of the hair follicles, including a comprehensive assessment of their preclinical and clinical performance.
Collapse
Affiliation(s)
- Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310009, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
| |
Collapse
|
14
|
Effect of Wenshentiaojing Decoction on Hormone Level and Follicular Number in Patients with Menstrual Disorder of Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4975867. [PMID: 34880919 PMCID: PMC8648443 DOI: 10.1155/2021/4975867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the curative effect of Wenshentiaojing Decoction on the treatment of menstrual disorder caused by PCOS. Methods Patients with menstrual disorders caused by PCOS admitted to our department from January 2020 to January 2021 were selected as the research objects and were divided into a control group and observation group according to the random number table method. The control group was treated with Western medicine, and the observation group was treated with Wenshentiaojing Decoction on the basis of Western medicine. The clinical efficacy of the two groups was compared. Before and after treatment, sex hormones (LH, FSH, LH/FSH, and testosterone (T)), ovarian volume, endometrial thickness, cervical mucus score, follicular number, menstrual conditions (menstrual duration, menstrual cycle, and menstrual volume), and other indicators in both groups were recorded. Results After treatment, the total effective rate of the observation group (91.1% (41/45)) was higher than that of the control group (77.8% (35/45)), and the difference was statistically significant (P < 0.05). After treatment, the LH, LH/FSH, and T levels in the observation group were lower than those in the control group, while the FSH level was higher than that in the control group (P < 0.05). After treatment, the ovarian volume, endometrial thickness, cervical mucus score, and follicle number in the observation group were higher than those in the control group (P < 0.05). After treatment, the menstrual duration and menstrual volume in the observation group were longer than those in the conventional group, and the menstrual cycle was shorter than that in the conventional group (P < 0.05). Conclusion For patients with menstrual disorders caused by PCOS, the treatment effect of Wenshentiaojing Decoction assisted with Western medicine is better, which can effectively improve the level of sex hormones, cervical mucus, and menstrual conditions, increase the ovarian volume, endometrial thickness, and follicle number, and improve the treatment effect, with fewer adverse reactions, which is worthy of further promotion and application.
Collapse
|
15
|
Topical Administration of Drugs Incorporated in Carriers Containing Phospholipid Soft Vesicles for the Treatment of Skin Medical Conditions. Pharmaceutics 2021; 13:pharmaceutics13122129. [PMID: 34959410 PMCID: PMC8706871 DOI: 10.3390/pharmaceutics13122129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
This review focuses on the improved topical treatment of various medical skin conditions by the use of drugs delivered from carriers containing phospholipid soft vesicles. Topical drug delivery has many advantages over other ways of administration, having increased patient compliance, avoiding the first-pass effect following oral drug administration or not requesting multiple doses administration. However, the skin barrier prevents the access of the applied drug, affecting its therapeutic activity. Carriers containing phospholipid soft vesicles are a new approach to enhance drug delivery into the skin and to improve the treatment outcome. These vesicles contain molecules that have the property to fluidize the phospholipid bilayers generating the soft vesicle and allowing it to penetrate into the deep skin layers. Ethosomes, glycerosomes and transethosomes are soft vesicles containing ethanol, glycerol or a mixture of ethanol and a surfactant, respectively. We review a large number of publications on the research carried out in vitro, in vivo in animal models and in humans in clinical studies, with compositions containing various active molecules for treatment of skin medical conditions including skin infections, skin inflammation, psoriasis, skin cancer, acne vulgaris, hair loss, psoriasis and skin aging.
Collapse
|
16
|
Ethosomes-based gel formulation of karanjin for treatment of acne vulgaris: in vitro investigations and preclinical assessment. 3 Biotech 2021; 11:456. [PMID: 34631355 DOI: 10.1007/s13205-021-02978-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/27/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to develop and characterize karanjin-loaded ethosomes-based gel formulation for enhanced topical delivery and effective therapy of skin acne. Karanjin-loaded ethosomes (K-ETH) presented a nanometric size of 140.87 ± 2.35 nm, entrapment of 71.41 ± 2.74% and enhanced permeation with 1.9 times increase in the flux and 2.4 times higher skin deposition compared to the hydro-ethanolic solution of karanjin. The DSC analysis confirmed successful entrapment of the karanjin within the ethosomes. The developed ethosomes were incorporated in the carbopol gel for adequate application on the skin surface. The ethosomal gel (K-EGF) also exhibited greater penetration in the rat skin as revealed by CLSM. The optimized K-EGF formulation was non-irritant to the skin as evident by Draize score test and histopathological examination. The highest zone of inhibition, 30.0 ± 1.52 mm and 36.22 ± 0.57 mm was produced by the K-EGF against Propionibacterium acnes and Staphylococcus epidermidis, respectively, indicating substantial antibacterial properties of the K-EGF. DPPH assay indicated its potent antioxidant effects. Substantial anti-inflammatory effects in the carrageenan-induced edema in the rat paw were evident with inhibition of rat paw edema by 66.66% and 70.37% upon application of K-EGF and standard anti-inflammatory agent, respectively. Anti-acne effects were also evident with K-EGF treatment with significant decrease in number and size of sebaceous gland units in dermis. Overall, the above findings vouch for a therapeutic opportunity to improve topical delivery of karanjin in acne treatment employing ethosomal gels as the promising carrier system. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02978-3.
Collapse
|
17
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
18
|
El-Hashemy HA. Design, formulation and optimization of topical ethosomes using full factorial design: in-vitro and ex-vivo characterization. J Liposome Res 2021; 32:74-82. [PMID: 34697998 DOI: 10.1080/08982104.2021.1955925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to develop lomefloxacin-loaded ethosomal vesicles intended to be applied topically for treating skin infections. Ethosomes were prepared using the cold method. The formulation variables were optimized using 22 factorial design and Design Expert® software for analyzing the data statistically and graphically using response surface plots. Phosphatidylcholine (X1) and ethanol (X2) were chosen as the independent variables, while the dependent variables comprised entrapment efficiency (Y1), vesicles size (Y2) and zeta potential (Y3). The optimized ethosomes were subsequently incorporated into Carbopol® 940 gel and characterized for rheological behaviour, in-vitro release, ex-vivo skin permeation and deposition. The ex-vivo permeation and skin deposition studies showed better results compared to drug solutions. In a nutshell, the ethosomal vesicles were found to be a promising carrier demonstrating enhanced topical delivery of lomefloxacin.
Collapse
Affiliation(s)
- Hadeer A El-Hashemy
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
19
|
Zhu Z, Chen T, Wang Z, Xue Y, Wu W, Wang Y, Du Q, Wu Y, Zeng Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. Integrated Proteomics and Metabolomics Link Acne to the Action Mechanisms of Cryptotanshinone Intervention. Front Pharmacol 2021; 12:700696. [PMID: 34539397 PMCID: PMC8440807 DOI: 10.3389/fphar.2021.700696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 01/18/2023] Open
Abstract
The label-free methods of proteomic combined with metabolomics were applied to explore the mechanisms of Cryptotanshinone (CPT) intervention in rats with acne. The model group consisted of rats given oleic acid (MC), then treated with CPT, while control groups did not receive treatment. The skin samples were significantly different between control, model and CPT-treated groups in hierarchical clustering dendrogram. Obvious separations of the skin metabolic profiles from the three groups were found through PCA scoring. In total, 231 and 189 differentially expressed proteins (DEPs) were identified in MC and CPT groups, respectively. By the KEGG analysis, five protein and metabolite pathways were found to be significantly altered. These played important roles in response to oleic acid-induced acne and drug treatment. CPT could negatively regulate glycolysis/gluconeogenesis and histidine metabolisms to decrease keratinocyte differentiation and improve excessive keratinization and cellular barrier function. CPT could down-regulate the IL-17 signaling pathway and regulate the acne-driven immune response of sebum cells. The biosynthesis of unsaturated fatty acids metabolism, glycerophospholipid metabolism and linoleic acid pathways could significantly alter sebum production and control sebaceous gland secretion after CPT treatment. The gap junction was up-regulated after CPT treatment and the skin barrier turned back to normal. Krt 14, Krt 16 and Krt 17 were significantly down-regulated, decreasing keratinization, while inflammatory cell infiltration was improved by down-regulation of Msn, up-regulation of linoleic acid and estrogen pathways after CPT treatment. These results propose action mechanisms for the use of CPT in acne, as a safe and potential new drug.
Collapse
Affiliation(s)
- Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Gu X, Guo J, Mai Y, Niu Y, Chen J, Zhao Q, Yang J. Improved transdermal permeability of tanshinone IIA from cataplasms by loading onto nanocrystals and porous silica. Pharm Dev Technol 2021; 26:1061-1072. [PMID: 34511025 DOI: 10.1080/10837450.2021.1980800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Novel transdermal cataplasms have been designed to improve permeability of poorly soluble drugs by different pretreatments. Nanocrystal and porous silica solid dispersions were loaded with Tanshinone IIA and incorporated into a cross-linked hydrogel matrix of cataplasm. It was shown that the small particle size and improved dissolution would increase dermal bioavailability. The adhesion, rheological properties, drug release, skin permeation, skin deposition and in vivo skin absorption of the different formulations were investigated. In an in vitro experiment using mouse skin, cumulative amount of drug permeated within 24 h was 7.32 ± 0.98 μg/cm2 from conventional cataplasm, 13.14 ± 0.70 μg/cm2 from nanocrystal-loaded cataplasm and 11.40 ± 0.13 μg/cm2 from porous silica solid dispersion-loaded cataplasm. In vitro dissolution profiles showed that drug release was 76.5% and 74.9% from two optimized cataplasms within 24 h, while conventional cataplasm was 55.0%. The cross-linking characteristics of the cataplasms were preserved after incorporation of different drug forms, while the elastic and viscous behaviors of the hydrogel layers increased. In vivo evaluation by CLSM showed the more favorable skin permeation for two optimized cataplasms. These findings suggest that applications of nanocrystal and porous silica systems on cataplasms enable effective transdermal delivery of poorly soluble drugs. The resulting drug delivery and rheological properties are desirable for transdermal application.AbbreviationAll the abbreviations that appear in this article are shown in Table 1.
Collapse
Affiliation(s)
- Xiangshuai Gu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yaping Mai
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Minidtry of Education, Ningxia Medical University, Yinchuan, PR China
| | - Jing Chen
- Preparation center, General hospital, Ningxia Medical University, Yinchuan, PR China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
21
|
Paiva-Santos AC, Mascarenhas-Melo F, Coimbra SC, Pawar KD, Peixoto D, Chá-Chá R, Araujo AR, Cabral C, Pinto S, Veiga F. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin Drug Deliv 2021; 18:1435-1454. [PMID: 34214003 DOI: 10.1080/17425247.2021.1951218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Acne vulgaris is a chronic inflammatory skin disorder that affects an extremely concerning percentage of teenagers (ca. 85%), gathering serious negative impacts on the social life and psychological well-being of individuals. Conventional topical formulations for acne show low tolerability and side effects, such as skin irritation, leading to a decrease in the user's adherence to therapy. Nanotechnology-based formulations were developed as new strategies for topical acne management, particularly to overcome the difficulties associated with conventional treatments.Areas covered: This paper presents a critical analysis of reviewed nanosized anti-acne technological strategies, strongly supporting controlled active ingredient release, improved skin permeation, and lower skin irritation. An updated regulatory framework, considering the promising applications in nanomedicine, and the toxicity of these nanosystems are also addressed.Expert opinion: Nanosystems evidence several advantages, attending to the possibility of controlled active ingredient release, better skin permeation, and lower skin irritation. However, novel nanotechnological strategies for acne treatment and care can lead to new side effects, but also environmental nano pollution. Little is known about the toxicology of these nanotechnology-based formulations, therefore, as future trends, more studies should be conducted to assure the consumers' health and environmental safety.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Cabanas Coimbra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Raquel Chá-Chá
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - André Rts Araujo
- Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, Guarda, Portugal.,Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Célia Cabral
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Selmo Pinto
- INFARMED - Autoridade Nacional Do Medicamento E Produtos De Saúde, I.P., Parque De Saúde De Lisboa, Lisboa, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Kobryń J, Dałek J, Musiał W. The Influence of Selected Factors on the Aqueous Cryptotanshinone Solubility. Pharmaceutics 2021; 13:pharmaceutics13070992. [PMID: 34209049 PMCID: PMC8309180 DOI: 10.3390/pharmaceutics13070992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The application of cryptotanshinone (CT), a diterpenoid obtained from the root of Salviae miltiorrhiza, is significantly hindered due to its poor aqueous solubility. The aim of the present research was to develop an optimal solvent for analytical and preparative procedures of prospective dermal hydrogel formulations with CT. The influence of pH, temperature, and cosolvent presence on the solubility of CT was examined. Various components were applied to increase CT solubility, i.e., ethanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-(hydroxymethyl)-1,3-propanediol, 2,2′,2″-nitrilotriethanol, and triisopropanoloamine. The concentration of CT was analyzed by spectral and chromatographic methods, including UV–vis and HPLC methods. The increased solubility of CT was demonstrated in alkaline solvents with ethanol as a cosolvent. CT solutions doped with alcoholamines are more stable compared to CT solutions doped with NaOH.
Collapse
|
23
|
Chen T, Zhu Z, Du Q, Wang Z, Wu W, Xue Y, Wang Y, Wu Y, Zeng Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. A Skin Lipidomics Study Reveals the Therapeutic Effects of Tanshinones in a Rat Model of Acne. Front Pharmacol 2021; 12:675659. [PMID: 34177586 PMCID: PMC8223585 DOI: 10.3389/fphar.2021.675659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tanshinone (TAN), a class of bioactive components in traditional Chinese medicinal plant Salvia miltiorrhiza, has antibacterial and anti-inflammatory effects, can enhance blood circulation, remove blood stasis, and promote wound healing. For these reasons it has been developed as a drug to treat acne. The purpose of this study was to evaluate the therapeutic effects of TAN in rats with oleic acid-induced acne and to explore its possible mechanisms of action through the identification of potential lipid biomarkers. In this study, a rat model of acne was established by applying 0.5 ml of 80% oleic acid to rats' back skin. The potential metabolites and targets involved in the anti-acne effects of TAN were predicted using lipidomics. The results indicate that TAN has therapeutic efficacy for acne, as supported by the results of the histological analyses and biochemical index assays for interleukin (IL)-8, IL-6, IL-β and tumor necrosis factor alpha. The orthogonal projection of latent structure discriminant analysis score was used to analyze the lipidomic profiles between control and acne rats. Ninety-six potential biomarkers were identified in the skin samples of the acne rats. These biomarkers were mainly related to glycerophospholipid and sphingolipid metabolism, and the regulation of their dysfunction is thought to be a possible therapeutic mechanism of action of TAN on acne.
Collapse
Affiliation(s)
- Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
The Treatment with Complementary and Alternative Traditional Chinese Medicine for Menstrual Disorders with Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6678398. [PMID: 34055020 PMCID: PMC8149243 DOI: 10.1155/2021/6678398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a frequent gynecological female endocrinopathy, characterized by chronic anovulation, hyperandrogenism, and insulin resistance (IR). Menstrual disorders are one of the main clinical manifestations of PCOS. Other symptoms include hirsutism and/acne. At present, the treatment of PCOS with irregular menstruation is mainly based on oral contraceptives, but there are some side effects and adverse reactions. In recent years, more and more attention has been paid to the complementary and alternative medicine (CAM), which has been widely used in clinical practice. Modern Western medicine is called "conventional medicine" or "orthodox medicine," and the complementary and alternative medicine is called "unconventional medicine" or "unorthodox medicine." CAM includes traditional medicine and folk therapy around the world. Around 65-80% of world health management business is classified into traditional medicine by the World Health Organization, which is used as alternative medicine in Western countries. In our country, Chinese medicine, acupuncture, and other therapies are commonly used due to their significant efficacy and higher safety. Therefore, this review aims to summarize and evaluate the mechanisms and the effect of current complementary replacement therapy in the treatment of menstrual disorders caused by PCOS, so as to provide guidance for the following basic and clinical research.
Collapse
|
25
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
26
|
Patel D, Patel B, Thakkar H. Lipid Based Nanocarriers: Promising Drug Delivery System for Topical Application. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Darshana Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Brijesh Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Hetal Thakkar
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| |
Collapse
|
27
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020; 25:molecules25132959. [PMID: 32605117 PMCID: PMC7412180 DOI: 10.3390/molecules25132959] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Collapse
|
30
|
Wang Z, Liu L, Xiang S, Jiang C, Wu W, Ruan S, Du Q, Chen T, Xue Y, Chen H, Weng L, Zhu H, Shen Q, Liu Q. Formulation and Characterization of a 3D-Printed Cryptotanshinone-Loaded Niosomal Hydrogel for Topical Therapy of Acne. AAPS PharmSciTech 2020; 21:159. [PMID: 32476076 DOI: 10.1208/s12249-020-01677-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cryptotanshinone (CPT) is an efficacious acne treatment, while niosomal hydrogel is a known effective topical drug delivery system that produces a minimal amount of irritation. Three-dimensional (3D) printing technologies have the potential to improve the field of personalized acne treatment. Therefore, this study endeavored to develop a 3D-printed niosomal hydrogel (3DP-NH) containing CPT as a topical delivery system for acne therapy. Specifically, CPT-loaded niosomes were prepared using a reverse phase evaporation method, and the formulation was optimized using a response surface methodology. In vitro characterization showed that optimized CPT-loaded niosomes were below 150 nm in size with an entrapment efficiency of between 67 and 71%. The CPT-loaded niosomes were added in a dropwise manner into the hydrogel to formulate CPT-loaded niosomal hydrogel (CPT-NH), which was then printed as 3DP-CPT-NH with specific drug dose, shape, and size using an extrusion-based 3D printer. The in vitro release behavior of 3DP-CPT-NH was found to follow the Korsmeyer-Peppas model. Permeation and deposition experiments showed significantly higher rates of transdermal flux, Q24, and CPT deposition (p < 0.05) compared with 3D-printed CPT-loaded conventional hydrogel (3DP-CPT-CH), which did not contain niosomes. In vivo anti-acne activity evaluated through an acne rat model revealed that 3DP-CPT-NH exhibited a greater anti-acne effect with no skin irritation. Enhanced skin hydration, wide inter-corneocyte gaps in the stratum corneum and a disturbed lipid arrangement may contribute towards the enhanced penetration properties of CPT. Collectively, this study demonstrated that 3DP-CPT-NH is a promising topical drug delivery system for personalized acne treatments.
Collapse
|
31
|
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020; 15:2439-2483. [PMID: 32346289 PMCID: PMC7169473 DOI: 10.2147/ijn.s227805] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nahidah Ibrahim Hammadi
- Department of Histology, College of Veterinary Medicine, University of Al-Anbar, Ramadi, Republic of Iraq
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kawa Mohammad Amin
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Kepala Batas13200, Pulau Pinang, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
32
|
Natsheh H, Vettorato E, Touitou E. Ethosomes for Dermal Administration of Natural Active Molecules. Curr Pharm Des 2020; 25:2338-2348. [PMID: 31333087 DOI: 10.2174/1381612825666190716095826] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/19/2023]
Abstract
Ethosomes are nanovesicular carriers for dermal administration. Phospholipids, ethanol at relatively high concentrations (up to 50%) and water are their main components. Ethosomes are what we call "soft vesicles" with fluid bilayers due to the presence of ethanol. The composition and structure of the vesicles augment their ability to entrap molecules with various physicochemical properties and deliver them to the deep strata of skin. Since their first design, ethosomal systems have been extensively investigated for a wide range of applications. This review focuses on work carried out in vitro, in vivo in animal models and in humans in clinical studies, with ethosomal formulations containing natural active molecules for the treatment of skin disorders. Skin bacterial and fungal infections, skin inflammation, acne vulgaris, arthritis, and skin cancer are examples of disorders managed successfully by ethosomal systems. Furthermore, Ethosomes loaded with a number of naturally occurring compounds for cosmetic applications are also reported. The efficient treatments together with a good safety profile and lack of toxicity or irritation paved the way towards the development of new dermal therapies.
Collapse
Affiliation(s)
- Hiba Natsheh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Elisa Vettorato
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.,Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padova, Italy
| | - Elka Touitou
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Shabbir M, Nagra U, Zaman M, Mahmood A, Barkat K. Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery. Curr Pharm Des 2020; 26:2149-2166. [PMID: 31931691 DOI: 10.2174/1381612826666200114090659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
The delivery of drugs, via different layers of skin, is challenging because it acts as a natural barrier and exerts hindrance against molecules to permeate into or through it. To overcome such obstacles, different noninvasive methods, like vehicle-drug interaction, modifications of the horny layer and nanoparticles have been suggested. The aim of the present review is to highlight some of the non-invasive methods for topical, diadermal and transdermal delivery of drugs. Special emphasis has been made on the information available in numerous research articles that put efforts in overcoming obstacles associated with barrier functions imposed by various layers of skin. Advances have been made in improving patient compliance that tends to avoid hitches involved in oral administration. Of particular interest is the use of lipid-based vesicles and nanoparticles for dermatological applications. These particulate systems can effectively interact and penetrate into the stratum corneum via lipid exchange and get distributed in epidermis and dermis. They also have the tendency to exert a systemic effect by facilitating the absorption of an active moiety into general circulation.
Collapse
Affiliation(s)
- Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
34
|
Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00976-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Amer SS, Nasr M, Mamdouh W, Sammour O. Insights on the Use of Nanocarriers for Acne Alleviation. Curr Drug Deliv 2018; 16:18-25. [DOI: 10.2174/1567201815666180913144145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/22/2018] [Accepted: 09/05/2018] [Indexed: 11/22/2022]
Abstract
Among the common myths in the cosmetics industry is the perception that acne only happens to teenagers, and specifically to females. However, acne is neither limited to a specific age, nor to a certain gender, it creates a stressful problem for many people. Many chemical treatments for acne were proven to be successful, but when administered as such, they showed many adverse effects, starting from itching to skin dryness and inflammation. Natural remedies have also been explored for acne treatment, and despite their safety, they suffered many stability problems attributed to their physicochemical properties, creating an obstacle for their topical delivery. Therefore, many nanocarriers were used to deliver those chemical and natural remedies topically to maximize their therapeutic potential in acne treatment. The present review discusses the different nanocarriers which were proven successful in improving the acne lesions, focusing on vesicular, lipidic, and polymeric systems.
Collapse
Affiliation(s)
- Sandra Sherif Amer
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, Egypt
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
36
|
Yang L, Wu L, Wu D, Shi D, Wang T, Zhu X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int J Nanomedicine 2017; 12:3357-3364. [PMID: 28490875 PMCID: PMC5413537 DOI: 10.2147/ijn.s134708] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ethosomes can promote the penetration of lipophilic drugs into the skin, but the underlying mechanism is still unknown. The purpose of this study was to investigate the mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. The formulation of ethosomes was optimized using the Box-Behnken experimental design, in which Rhodamine B and 1-palmitoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-phosphocholine were used to simulate a model lipophilic drug and act as a fluorescent tracer of ethosomal phospholipids, respectively. Liposomes with the same phospholipid concentration and a hydroethanolic solution with the same ethanol concentration were also prepared as controls. The percutaneous progression of the above fluorescent preparations was observed by confocal laser scanning microscopy, and the fluorescence intensity of the images was analyzed. The optimized ethosome formulation consisted of 2.45% yolk phospholipids, 30% ethanol, and 67.55% distilled water. The percutaneous permeation of Rhodamine B in the optimized ethosomes was superior to that in hydroethanolic solution (P<0.05) and liposomes (P<0.05). The ethosomes could penetrate the skin via the percutaneous pathway of the hair follicle and stratum corneum, while during the process of penetration, the vesicles were broken and the phospholipids were retained in the upper epidermis, with the test compounds penetrating gradually. The superior percutaneous penetration of ethosomes was linked to the synergistic effects of their ingredients. The percutaneous pathways of ethosomes included open hair follicles and stratum corneum pathways. In addition, the vesicles might break up during percutaneous penetration in the superficial layer of the skin, allowing the test compounds to keep permeating into the deeper layer alone, while the phospholipid was retained in the upper epidermis.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Lifang Wu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Dongze Wu
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Deshun Shi
- Department of Dermatology, The First People's Hospital of Foshan, Foshan
| | - Tai Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoliang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Zuo T, Chen H, Xiang S, Hong J, Cao S, Weng L, Zhang L, Liu L, Li H, Zhu H, Liu Q. Cryptotanshinone-Loaded Cerasomes Formulation: In Vitro Drug Release, in Vivo Pharmacokinetics, and in Vivo Efficacy for Topical Therapy of Acne. ACS OMEGA 2016; 1:1326-1335. [PMID: 30023507 PMCID: PMC6044685 DOI: 10.1021/acsomega.6b00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/08/2016] [Indexed: 06/08/2023]
Abstract
Cerasomes (CS), evolved from liposomes, are novel drug-delivery systems that have potential medical application as carriers for drugs or active ingredients. Although many studies have been conducted on the pharmaceutical and physicochemical properties of CS, the role of CS in influencing the in vivo plasma and topical pharmacokinetics and efficacy of topical drug delivery remain unclear. In this context, we chose cryptotanshinone (CTS) as a model drug for the preparation of CTS-CS by means of the ethanol injection method to investigate their in vitro/in vivo drug-release behavior and in vivo efficacy. (1) In in vitro studies, CTS-CS gel was proven to be capable of achieving a higher permeation rate and significant accumulation in the dermis of isolated rat skin using Franz diffusion cells. (2) In in vivo studies, microdialysis experiments used to measure the plasma and topical pharmacokinetics demonstrated that the CS had a high drug concentration, short peak time, and slow elimination. Meanwhile, the plasma area under the concentration-time curve of CTS-CS gel was less than half that for the CTS gel in 12 h, which indicates that the drug bioavailability dramatically increased in the experiments. (3) In in vivo efficacy studies, we duplicated a rat acne model and performed antiacne efficacy experiments. The CTS-CS gel improved the antiacne efficacy compared to that of ordinary CTS gel. Moreover, it inhibited the expression of interleukin-1α and androgen receptors effectively. All of these results show that CTS-CS gel has significant potential for the treatment of acne induced by inflammation and excessive secretion of androgen, suggesting that CS formulations were designed as a good therapeutic option for skin disease.
Collapse
Affiliation(s)
- Ting Zuo
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Huoji Chen
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Shijian Xiang
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Junhui Hong
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Siwei Cao
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Lidong Weng
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Lu Zhang
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Li Liu
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| | - Hui Li
- Guangzhou
Red Cross Hospital, 396 Tongfuzhong Road, Guangzhou 510220, P. R. China
| | - Hongxia Zhu
- Combining
Traditional Chinese and Western Medicine Hospital, Southern Medical University, 13 Shiliugang Road, Guangzhou 510315, P. R. China
| | - Qiang Liu
- School
of Traditional Chinese Medicine, Southern
Medical University, 1023
Shatainan Road, Guangzhou 510515, P. R. China
| |
Collapse
|