1
|
Liu X, Yang S, Sun L, Xie G, Chen W, Liu Y, Wang G, Yin X, Zhao X. Distribution and Organization of Descending Neurons in the Brain of Adult Helicoverpa armigera (Insecta). INSECTS 2023; 14:63. [PMID: 36661991 PMCID: PMC9862761 DOI: 10.3390/insects14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The descending neurons (DNs) of insects connect the brain and thoracic ganglia and play a key role in controlling insect behaviors. Here, a comprehensive investigation of the distribution and organization of the DNs in the brain of Helicoverpa armigera (Hübner) was made by using backfilling from the neck connective combined with immunostaining techniques. The maximum number of DN somata labeled in H. armigera was about 980 in males and 840 in females, indicating a sexual difference in DNs. All somata of DNs in H. armigera were classified into six different clusters, and the cluster of DNd was only found in males. The processes of stained neurons in H. armigera were mainly found in the ventral central brain, including in the posterior slope, ventral lateral protocerebrum, lateral accessory lobe, antennal mechanosensory and motor center, gnathal ganglion and other small periesophageal neuropils. These results indicate that the posterior ventral part of the brain is vital for regulating locomotion in insects. These findings provide a detailed description of DNs in the brain that could contribute to investigations on the neural mechanism of moth behaviors.
Collapse
Affiliation(s)
- Xiaolan Liu
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shufang Yang
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Longlong Sun
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiying Xie
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenbo Chen
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinming Yin
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xincheng Zhao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Stink Bug Communication and Signal Detection in a Plant Environment. INSECTS 2021; 12:insects12121058. [PMID: 34940147 PMCID: PMC8705670 DOI: 10.3390/insects12121058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Plants influenced the evolution of plant-dwelling stink bugs' systems underlying communication with chemical and substrate-borne vibratory signals. Plant volatiles provides cues that increase attractiveness or interfere with the probability of finding a mate in the field. Mechanical properties of herbaceous hosts and associated plants alter the frequency, amplitude, and temporal characteristics of stink bug species and sex-specific vibratory signals. The specificity of pheromone odor tuning has evolved through highly specific odorant receptors located within the receptor membrane. The narrow-band low-frequency characteristics of the signals produced by abdomen vibration and the frequency tuning of the highly sensitive subgenual organ vibration receptors match with filtering properties of the plants enabling optimized communication. A range of less sensitive mechanoreceptors, tuned to lower vibration frequencies, detect signals produced by other mechanisms used at less species-specific levels of communication in a plant environment. Whereas the encoding of frequency-intensity and temporal parameters of stink bug vibratory signals is relatively well investigated at low levels of processing in the ventral nerve cord, processing of this information and its integration with other modalities at higher neuronal levels still needs research attention.
Collapse
|
3
|
Diakova AV, Polilov AA. Sensation of the tiniest kind: the antennal sensilla of the smallest free-living insect Scydosella musawasensis (Coleoptera: Ptiliidae). PeerJ 2020; 8:e10401. [PMID: 33282562 PMCID: PMC7690297 DOI: 10.7717/peerj.10401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
Miniaturization is a major evolutionary trend prominent in insects, which has resulted in the existence of insects comparable in size to some unicellular protists. The adaptation of the complex antennal multisensory systems to extreme miniaturization is a fascinating problem, which remains almost unexplored. We studied the antennal sensilla of Scydosella musawasensis Hall, 1999 (Coleoptera: Ptiliidae), the smallest free-living insect, using scanning electron microscopy. The antenna of S. musawasensis bears 131 sensilla; no intraspecific variation in the number or position of the sensilla has been revealed. Nine different morphological types of sensilla are described according to their external morphological features and distribution: four types of sensilla trichodea, one type of sensilla chaetica, two types of sensilla styloconica, and two types of sensilla basiconica. Morphometric analysis of the sensilla of S. musawasensis, based on measurements of the lengths and diameters of sensilla and their location and number, showed the absence of significant differences between females and males. Comparative allometric analysis of S. musawasensis and larger Coleoptera showed that the number of sensilla and the size of sensilla chaetica decrease with decreasing body size. However, the number of the types of sensilla and the length and diameter of the multiporous sensilla basiconica revealed no correlation with the body size. Comparison of the acquired data with the results of our earlier study of the antennal sensilla of some of the smallest parasitic wasps is used to put forward hypotheses on the common principles of miniaturization of the antennal sensory systems of insects.
Collapse
Affiliation(s)
- Anna V. Diakova
- Department of Entomology, Faculty of Biology, Moscow State University, Moscow, Russian Federation
| | - Alexey A. Polilov
- Department of Entomology, Faculty of Biology, Moscow State University, Moscow, Russian Federation
| |
Collapse
|
4
|
Xie GY, Ma BW, Liu XL, Chang YJ, Chen WB, Li GP, Feng HQ, Zhang YJ, Berg BG, Zhao XC. Brain Organization of Apolygus lucorum: A Hemipteran Species With Prominent Antennal Lobes. Front Neuroanat 2019; 13:70. [PMID: 31379518 PMCID: PMC6654032 DOI: 10.3389/fnana.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The anatomical organization of distinct regions in the insect brain often reflects their functions. In the present study, the brain structure of Apolygus lucorum was examined by using immunolabeling and three-dimensional reconstruction. The results revealed the location and volume of prominent neuropils, such as the antennal lobes (AL), optic lobes (OL), anterior optic tubercles (AOTU), central body (CB), lateral accessory lobes (LAL), mushroom lobes, and distinct tritocerebral neuropils. As expected, this brain is similar to that of other insects. One exception, however, is that the antennal lobes were found to be the most prominent neuropils. Their size relative to the entire brain is the largest among all insect species studied so far. In contrast, the calyx, a region getting direct input from the antennal lobe, has a smaller size relative to the brain than that of other species. These findings may suggest that olfaction plays an essential role for A. lucorum.
Collapse
Affiliation(s)
- Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Chang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guo-Ping Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Hong-Qiang Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Ma BW, Zhao XC, Berg BG, Xie GY, Tang QB, Wang GR. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata. Front Cell Neurosci 2017; 11:370. [PMID: 29209176 PMCID: PMC5702295 DOI: 10.3389/fncel.2017.00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.
Collapse
Affiliation(s)
- Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gui-Ying Xie
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|