1
|
Moreau SJM, Marchal L, Boulain H, Musset K, Labas V, Tomas D, Gauthier J, Drezen JM. Multi-omic approach to characterize the venom of the parasitic wasp Cotesia congregata (Hymenoptera: Braconidae). BMC Genomics 2025; 26:431. [PMID: 40307720 PMCID: PMC12044726 DOI: 10.1186/s12864-025-11604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cotesia congregata is a parasitoid Hymenoptera belonging to the Braconidae family and carrying CCBV (Cotesia congregata Bracovirus), an endosymbiotic polydnavirus. CCBV virus is considered as the main virulence factor of this species, which has raised questions, over the past thirty years, about the potential roles of venom in the parasitic interaction between C. congregata and its host, Manduca sexta (Lepidoptera: Sphingidae). To investigate C. congregata venom composition, we identified genes overexpressed in the venom glands (VGs) compared to ovaries, analyzed the protein composition of this fluid and performed a detailed analysis of conserved domains of these proteins. RESULTS Of the 14 140 known genes of the C. congregata genome, 659 genes were significantly over-expressed (with 10-fold or higher changes in expression) in the VGs of female C. congregata, compared with the ovaries. We identified 30 proteins whose presence was confirmed in venom extracts by proteomic analyses. Twenty-four of these were produced as precursor molecules containing a predicted signal peptide. Six of the proteins lacked a predicted signal peptide, suggesting that venom production in C. congregata also involves non-canonical secretion mechanisms. We have also analysed 18 additional proteins and peptides of interest whose presence in venom remains uncertain, but which could play a role in VG function. CONCLUSIONS Our results show that the venom of C. congregata not only contains proteins (including several enzymes) homologous to well-known venomous compounds, but also original proteins that appear to be specific to this species. This exhaustive study sheds a new light on this venom composition, the molecular diversity of which was unexpected. These data pave the way for targeted functional analyses and to better understand the evolutionary mechanisms that have led to the formation of the venomous arsenals we observe today in parasitoid insects.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France.
| | - Lorène Marchal
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| | - Hélène Boulain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| | - Valérie Labas
- PRC, INRAE, CNRS, Université de Tours, Nouzilly, 37380, France
- Plateforme de Phénotypage par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Daniel Tomas
- PRC, INRAE, CNRS, Université de Tours, Nouzilly, 37380, France
- Plateforme de Phénotypage par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Jérémy Gauthier
- Naturéum - Cantonal Museum of Natural Sciences, Lausanne, 1005, Switzerland
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| |
Collapse
|
2
|
Kamiyama T, Shimada-Niwa Y, Mori H, Tani N, Takemata-Kawabata H, Fujii M, Takasu A, Katayama M, Kuwabara T, Seike K, Matsuda-Imai N, Senda T, Katsuma S, Nakamura A, Niwa R. Parasitoid wasp venoms degrade Drosophila imaginal discs for successful parasitism. SCIENCE ADVANCES 2025; 11:eadq8771. [PMID: 39879297 PMCID: PMC11777187 DOI: 10.1126/sciadv.adq8771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Parasitoid wasps, one of the most diverse and species-rich animal groups on Earth, produce venoms that manipulate host development and physiology to exploit resources. However, mechanisms of actions of these venoms remain poorly understood. Here, we discovered that the endoparasitoid wasp, Asobara japonica, induces apoptosis, autophagy, and mitotic arrest in the adult tissue precursors of its host Drosophila larvae. We termed this phenomenon imaginal disc degradation (IDD). A multi-omics approach facilitated identification of two venom proteins of A. japonica necessary for IDD, which is critical for parasitism success. Our study highlights a venom-mediated hijacking strategy of the parasitoid wasp that allows the host larvae to grow, but ultimately prevents their metamorphosis.
Collapse
Affiliation(s)
- Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hitoha Mori
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Naoki Tani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hitomi Takemata-Kawabata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mitsuki Fujii
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Akira Takasu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Minami Katayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Takayoshi Kuwabara
- College of Biological Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuki Seike
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Noriko Matsuda-Imai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), Tsukuba 305-0801, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Inwood SN, Skelly J, Guhlin JG, Harrop TWR, Goldson SL, Dearden PK. Chromosome-level genome assemblies of two parasitoid biocontrol wasps reveal the parthenogenesis mechanism and an associated novel virus. BMC Genomics 2023; 24:440. [PMID: 37543591 PMCID: PMC10403939 DOI: 10.1186/s12864-023-09538-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Biocontrol is a key technology for the control of pest species. Microctonus parasitoid wasps (Hymenoptera: Braconidae) have been released in Aotearoa New Zealand as biocontrol agents, targeting three different pest weevil species. Despite their value as biocontrol agents, no genome assemblies are currently available for these Microctonus wasps, limiting investigations into key biological differences between the different species and strains. METHODS AND FINDINGS Here we present high-quality genomes for Microctonus hyperodae and Microctonus aethiopoides, assembled with short read sequencing and Hi-C scaffolding. These assemblies have total lengths of 106.7 Mb for M. hyperodae and 129.2 Mb for M. aethiopoides, with scaffold N50 values of 9 Mb and 23 Mb respectively. With these assemblies we investigated differences in reproductive mechanisms, and association with viruses between Microctonus wasps. Meiosis-specific genes are conserved in asexual Microctonus, with in-situ hybridisation validating expression of one of these genes in the ovaries of asexual Microctonus aethiopoides. This implies asexual reproduction in these Microctonus wasps involves meiosis, with the potential for sexual reproduction maintained. Investigation of viral gene content revealed candidate genes that may be involved in virus-like particle production in M. aethiopoides, as well as a novel virus infecting M. hyperodae, for which a complete genome was assembled. CONCLUSION AND SIGNIFICANCE These are the first published genomes for Microctonus wasps which have been deployed as biocontrol agents, in Aotearoa New Zealand. These assemblies will be valuable resources for continued investigation and monitoring of these biocontrol systems. Understanding the biology underpinning Microctonus biocontrol is crucial if we are to maintain its efficacy, or in the case of M. hyperodae to understand what may have influenced the significant decline of biocontrol efficacy. The potential for sexual reproduction in asexual Microctonus is significant given that empirical modelling suggests this asexual reproduction is likely to have contributed to biocontrol decline. Furthermore the identification of a novel virus in M. hyperodae highlights a previously unknown aspect of this biocontrol system, which may contribute to premature mortality of the host pest. These findings have potential to be exploited in future in attempt to increase the effectiveness of M. hyperodae biocontrol.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - John Skelly
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
- Humble Bee Bio, Wellington, Aotearoa, New Zealand
| | - Joseph G Guhlin
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
5
|
Inwood SN, Harrop TWR, Dearden PK. The venom composition and parthenogenesis mechanism of the parasitoid wasp Microctonus hyperodae, a declining biocontrol agent. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103897. [PMID: 36584929 DOI: 10.1016/j.ibmb.2022.103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A biocontrol system in New Zealand using the endoparasitoid Microctonus hyperodae is failing, despite once being one of the most successful examples of classical biocontrol worldwide. Though it is of significant economic importance as a control agent, little is known about the genetics of M. hyperodae. In this study, RNA-seq was used to characterise two key traits of M. hyperodae in this system, the venom, critical for the initial success of biocontrol, and the asexual reproduction mode, which influenced biocontrol decline. Expanded characterisation of M. hyperodae venom revealed candidates involved in manipulating the host environment to source nutrition for the parasitoid egg, preventing a host immune response against the egg, as well as two components that may stimulate the host's innate immune system. Notably lacking from the venom-specific expression list was calreticulin, as it also had high expression in the ovaries. In-situ hybridisation revealed this ovarian expression was localised to the follicle cells, which may result in the deposition of calreticulin into the egg exochorion. Investigating the asexual reproduction of M. hyperodae revealed core meiosis-specific genes had conserved expression patterns with the highest expression in the ovaries, suggesting M. hyperodae parthenogenesis involves meiosis and that the potential for sexual reproduction may have been retained. Upregulation of genes involved in endoreduplication provides a potential mechanism for the restoration of diploidy in eggs after meiosis.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand; Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
6
|
Nair RR, Peterson AT. Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: implications for biological control. PeerJ 2023; 11:e15222. [PMID: 37123003 PMCID: PMC10135410 DOI: 10.7717/peerj.15222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Insect pest invasions cause significant damage to crop yields, and the resultant economic losses are truly alarming. Climate change and trade liberalization have opened new ways of pest invasions. Given the consumer preference towards organic agricultural products and environment-friendly nature of natural pest control strategies, biological control is considered to be one of the potential options for managing invasive insect pests. Drosophila suzukii (Drosophilidae) is an extremely damaging fruit pest, demanding development of effective and sustainable biological control strategies. In this study, we assessed the potential of the parasitoid Leptopilina japonica (Figitidae) as a biocontrol agent for D. suzukii using ecological niche modeling approaches. We developed global-scale models for both pest and parasitoid to identify four components necessary to derive a niche based, target oriented prioritization approach to plan biological control programs for D. suzukii: (i) potential distribution of pest D. suzukii, (ii) potential distribution of parasitoid L. japonica, (iii) the degree of overlap in potential distributions of pest and parasitoid, and (iv) biocontrol potential of this system for each country. Overlapping suitable areas of pest and parasitoid were identified at two different thresholds and at the most desirable threshold (E = 5%), potential for L. japonica mediated biocontrol management existed in 125 countries covering 1.87 × 107 km2, and at the maximum permitted threshold (E = 10%), land coverage was reduced to 1.44 × 107 km2 in 121 countries. Fly pest distributional information as a predictor variable was not found to be improving parasitoid model performance, and globally, only in half of the countries, >50% biocontrol coverage was estimated. We therefore suggest that niche specificities of both pest and parasitoid must be included in site-specific release planning of L. japonica for effective biocontrol management aimed at D. suzukii. This study can be extended to design cost-effective pre-assessment strategies for implementing any biological control management program.
Collapse
Affiliation(s)
- Rahul R. Nair
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
7
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Quicke DLJ, Butcher BA. Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps. BIOLOGY 2021; 10:50. [PMID: 33445639 PMCID: PMC7828074 DOI: 10.3390/biology10010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution.
Collapse
Affiliation(s)
- Donald L. J. Quicke
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| | - Buntika A. Butcher
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| |
Collapse
|
9
|
Zhang X, Li C, Pan Z, Zhu J, Wang Z, Shi M, Chen X, Huang J. The complete mitochondrial genome of Asobara japonica (Hymenoptera: Braconidae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1732238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xian Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Li
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiachen Zhu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Heringer P, Dias GB, Kuhn GCS. A Horizontally Transferred Autonomous Helitron Became a Full Polydnavirus Segment in Cotesia vestalis. G3 (BETHESDA, MD.) 2017; 7:3925-3935. [PMID: 29042411 PMCID: PMC5714489 DOI: 10.1534/g3.117.300280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Bracoviruses associate symbiotically with thousands of parasitoid wasp species in the family Braconidae, working as virulence gene vectors, and allowing the development of wasp larvae within hosts. These viruses are composed of multiple DNA circles that are packaged into infective particles, and injected together with wasp's eggs during parasitization. One of the viral segments of Cotesia vestalis bracovirus contains a gene that has been previously described as a helicase of unknown origin. Here, we demonstrate that this gene is a Rep/Helicase from an intact Helitron transposable element that covers the viral segment almost entirely. We also provide evidence that this element underwent at least two horizontal transfers, which appear to have occurred consecutively: first from a Drosophila host ancestor to the genome of the parasitoid wasp C. vestalis and its bracovirus, and then from C. vestalis to a lepidopteran host (Bombyx mori). Our results reinforce the idea of parasitoid wasps as frequent agents of horizontal transfers in eukaryotes. Additionally, this Helitron-bracovirus segment is the first example of a transposable element that effectively became a whole viral circle.
Collapse
Affiliation(s)
- Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|