1
|
Nix JL, Schettini GP, Speckhart SL, Ealy AD, Biase FH. Ablation of OCT4 function in cattle embryos by double electroporation of CRISPR-Cas for DNA and RNA targeting (CRISPR-DART). PNAS NEXUS 2023; 2:pgad343. [PMID: 37954164 PMCID: PMC10637268 DOI: 10.1093/pnasnexus/pgad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.
Collapse
Affiliation(s)
- Jada L Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Frasca D, Romero M, Garcia D, Diaz A, Blomberg BB. Hyper-metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immun Ageing 2021; 18:9. [PMID: 33639971 PMCID: PMC7916295 DOI: 10.1186/s12979-021-00222-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aging is associated with increased intrinsic B cell inflammation, decreased protective antibody responses and increased autoimmune antibody responses. The effects of aging on the metabolic phenotype of B cells and on the metabolic programs that lead to the secretion of protective versus autoimmune antibodies are not known. METHODS Splenic B cells and the major splenic B cell subsets, Follicular (FO) and Age-associated B cells (ABCs), were isolated from the spleens of young and old mice and left unstimulated. The RNA was collected to measure the expression of markers associated with intrinsic inflammation and autoimmune antibody production by qPCR. B cells and B cell subsets were also stimulated with CpG and supernatants collected after 7 days to measure autoimmune IgG secretion by ELISA. Metabolic measures (oxygen consumption rate, extracellular acidification rate and glucose uptake) were performed using a Seahorse XFp extracellular flux analyzer. RESULTS Results have identified the subset of ABCs, whose frequencies and numbers increase with age and represent the most pro-inflammatory B cell subset, as the cell type mainly if not exclusively responsible for the expression of inflammatory markers and for the secretion of autoimmune antibodies in the spleen of old mice. Hyper-inflammatory ABCs from old mice are also hyper-metabolic, as compared to those from young mice and to the subset of FO B cells, a feature needed not only to support their higher expression of RNA for inflammatory markers but also their higher autoimmune antibody secretion. CONCLUSIONS These results identify a relationship between intrinsic inflammation, metabolism and autoimmune B cells and suggest possible ways to understand cellular mechanisms that lead to the generation of pathogenic B cells, that are hyper-inflammatory and hyper-metabolic, and secrete IgG antibodies with autoimmune specificities.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, FL, 33136, Miami, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, FL, 33136, Miami, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, FL, 33136, Miami, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, FL, 33136, Miami, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, FL, 33136, Miami, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
|
5
|
Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat Immunol 2018; 19:407-419. [PMID: 29483597 PMCID: PMC6095139 DOI: 10.1038/s41590-018-0056-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Age-associated B cells (ABCs) are a T-bet–dependent B cell subset,
which accumulates prematurely in autoimmune settings. The pathways regulating
ABCs in autoimmunity are largely unknown. SWAP-70 and
DEF6 (also known as IBP or SLAT) are the only two
members of the SWEF family, a unique family of Rho GTPase-regulatory proteins
that controls both cytoskeletal dynamics and IRF4 activity. Notably,
DEF6 is a newly identified human SLE-risk variant. Here we
show that the lupus syndrome that developed in SWEF-deficient mice is
accompanied by the accumulation of ABCs, which produce autoantibodies upon
stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome
and a unique chromatin landscape characterized by enrichment in motifs bound by
transcription factors of the IRF family, AP-1/BATF, and T-bet. Enhanced ABC
formation in SWEF-deficient mice was controlled by interleukin 21 (IL-21) and
IRF5, whose variants are strongly associated with lupus. The lack of SWEF
proteins led to dysregulated IRF5 activity in response to IL-21 stimulation.
These studies thus uncover a new genetic pathway controlling ABCs in
autoimmunity.
Collapse
|
6
|
The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun 2017; 8:254. [PMID: 28811467 PMCID: PMC5557982 DOI: 10.1038/s41467-017-00348-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1–4E-BP–eIF4E axis, secondary to aberrant assembly of a raptor–p62–TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity. Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Collapse
|
7
|
|
8
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|