1
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
2
|
Adukauskienė D, Mickus R, Dambrauskienė A, Vanagas T, Adukauskaitė A. Improving Clostridioides difficile Infectious Disease Treatment Response via Adherence to Clinical Practice Guidelines. Antibiotics (Basel) 2024; 13:51. [PMID: 38247610 PMCID: PMC10812669 DOI: 10.3390/antibiotics13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a predominant nosocomial infection, and guidelines for improving diagnosis and treatment were published in 2017. We conducted a single-center, retrospective 10-year cohort study of patients with primary C. difficile infectious disease (CDID) at the largest referral Lithuanian university hospital, aiming to evaluate the clinical and laboratory characteristics of CDID and their association with the outcomes, as well as implication of concordance with current Clinical Practice Guidelines. The study enrolled a total of 370 patients. Cases with non-concordant CDID treatment resulted in more CDID-related Intensive Care Unit (ICU) admissions (7.5 vs. 1.8%) and higher CDID-related mortality (13.0 vs. 1.8%) as well as 30-day all-cause mortality (61.0 vs. 36.1%) and a lower 30-day survival compared with CDID cases with concordant treatment (p < 0.05). Among cases defined by two criteria for severe CDID, only patients with non-concordant metronidazole treatment had refractory CDID (68.8 vs. 0.0%) compared with concordant vancomycin treatment. In the presence of non-concordant metronidazole treatment for severe CDID, only cases defined by two severity criteria had more CDID-related ICU admissions (18.8 vs. 0.0%) and higher CDID-related mortality (25.0 vs. 2.0%, p < 0.05) compared with cases defined by one criterion. Severe comorbidities and the continuation of concomitant antibiotics administered at CDID onset reduced (p < 0.05) the 30-day survival and increased (p = 0.053) 30-day all-cause mortality, with 57.6 vs. 10.7% and 52.0 vs. 25.0%, respectively. Conclusions: CDID treatment non-concordant with the guidelines was associated with various adverse outcomes. In CDID with leukocytes ≥ 15 × 109/L and serum creatinine level > 133 µmol/L (>1.5 mg/dL), enteral vancomycin should be used to avoid refractory response, as metronidazole use was associated with CDID-related ICU admission and CDID-related mortality. Severe comorbidities worsened the outcomes as they were associated with reduced 30-day survival. The continuation of concomitant antibiotic therapy increased 30-day all-cause mortality; thus, it needs to be reasonably justified, deescalated or stopped.
Collapse
Affiliation(s)
- Dalia Adukauskienė
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.D.); (T.V.)
| | - Rytis Mickus
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.D.); (T.V.)
| | - Asta Dambrauskienė
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.D.); (T.V.)
| | - Tomas Vanagas
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.D.); (T.V.)
| | - Agnė Adukauskaitė
- Department of Cardiology and Angiology, University Hospital of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
3
|
Mori N, Hirai J, Ohashi W, Asai N, Shibata Y, Mikamo H. Clinical Efficacy of Fidaxomicin and Oral Metronidazole for Treating Clostridioides difficile Infection and the Associated Recurrence Rate: A Retrospective Cohort Study. Antibiotics (Basel) 2023; 12:1323. [PMID: 37627743 PMCID: PMC10451525 DOI: 10.3390/antibiotics12081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridioides difficile infection (CDI) has significant implications for healthcare economics. Although clinical trials have compared fidaxomicin (FDX) and vancomycin, comparisons of FDX and oral metronidazole (MNZ) are limited. Therefore, we compared the therapeutic effects of FDX and oral MNZ. Patients diagnosed with CDI between January 2015 and March 2023 were enrolled. Those treated with oral MNZ or FDX were selected and retrospectively analyzed. The primary outcome was the global cure rate. Secondary outcomes included factors contributing to the CDI global cure rate; the rate of medication change owing to initial treatment failure; and incidence rates of clinical cure, recurrence, and all-cause mortality within 30 days. Of the 264 enrolled patients, 75 and 30 received initial oral MNZ and FDX treatments, respectively. The corresponding CDI global cure rates were 53.3% and 70% (p = 0.12). In multivariate analysis, FDX was not associated with the global cure rate. In the MNZ group, 18.7% of the patients had to change medications owing to initial treatment failure. The FDX group had a higher clinical cure rate and lower recurrence rate than the MNZ group, although not significant. However, caution is necessary owing to necessary treatment changes due to MNZ failure.
Collapse
Affiliation(s)
- Nobuaki Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
- Department of Infection Prevention and Control, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| | - Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
- Department of Infection Prevention and Control, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| | - Wataru Ohashi
- Division of Biostatistics, Clinical Research Center, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
- Department of Infection Prevention and Control, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| | - Yuichi Shibata
- Department of Infection Prevention and Control, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
- Department of Infection Prevention and Control, Aichi Medical University, 1-1 Yazakokarimata Nagakute-shi, Aichi 480-1195, Japan
| |
Collapse
|
4
|
Bublitz A, Brauer M, Wagner S, Hofer W, Müsken M, Deschner F, Lesker TR, Neumann-Schaal M, Paul LS, Nübel U, Bartel J, Kany AM, Zühlke D, Bernecker S, Jansen R, Sievers S, Riedel K, Herrmann J, Müller R, Fuchs TM, Strowig T. The natural product chlorotonil A preserves colonization resistance and prevents relapsing Clostridioides difficile infection. Cell Host Microbe 2023; 31:734-750.e8. [PMID: 37098342 DOI: 10.1016/j.chom.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.
Collapse
Affiliation(s)
- Arne Bublitz
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Madita Brauer
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany; Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Stefanie Wagner
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Walter Hofer
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Felix Deschner
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Lena-Sophie Paul
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Ulrich Nübel
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany; Microbial Genome Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jürgen Bartel
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Andreas M Kany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Steffen Bernecker
- Department of Microbial Drugs, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany; Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany.
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany.
| |
Collapse
|
5
|
Krutova M, Davis K, Guery B, Barbut F. Faecal microbiota transplantation for first and second episodes of Clostridioides difficile infection. Lancet Gastroenterol Hepatol 2023; 8:111-112. [PMID: 36620980 DOI: 10.1016/s2468-1253(22)00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine Charles University and Motol University Hospital, Prague 150 06, Czech Republic; The European Society of Clinical Microbiology and Infectious Diseases Study Group for C difficile, Basel, Switzerland.
| | - Kerrie Davis
- Healthcare Associated Infection Research Group, Leeds Teaching Hospitals National Health Service Trust and University of Leeds, Leeds, UK; The European Society of Clinical Microbiology and Infectious Diseases Study Group for C difficile, Basel, Switzerland
| | - Benoit Guery
- Department of Medicine, Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland; The European Society of Clinical Microbiology and Infectious Diseases Study Group for C difficile, Basel, Switzerland
| | - Frédéric Barbut
- National Reference Laboratory for Clostridioides difficile, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France; The European Society of Clinical Microbiology and Infectious Diseases Study Group for C difficile, Basel, Switzerland
| |
Collapse
|
6
|
Emerging Options for the Prevention and Management of Clostridioides difficile Infection. Drugs 2023; 83:105-116. [PMID: 36645620 PMCID: PMC9841950 DOI: 10.1007/s40265-022-01832-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
Agents in development for the prevention or treatment of Clostridioides difficile infection can be split into three broad categories: antibiotics, microbiome restoration, and vaccines. Given the extensive list of agents currently in development, this narrative review will focus on agents that have progressed into late-stage clinical trials, defined as having a Phase III clinical trial registered on ClinicalTrials.gov. These agents include one antibiotic (ridinilazole), three live biotherapeutic products (LBPs) (CP101, RBX2660, and SER109), and two toxoid vaccines (PF06425090 and a second toxoid vaccine). As new prevention and treatment strategies enter the market, clinicians and administrators will need knowledge of these products to make rational decisions on how best to adopt them into clinical practice.
Collapse
|
7
|
Bloom PP, Young VB. Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection. Expert Opin Biol Ther 2023; 23:89-101. [PMID: 36536532 DOI: 10.1080/14712598.2022.2154600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The gut microbiome is implicated in Clostridioides difficile infection (CDI) and recurrent CDI (rCDI). AREAS COVERED This review covers the mechanisms by which microbiome therapeutics treat rCDI, their efficacy and safety, and clinical trial design considerations for future research. EXPERT OPINION Altering the chemical environment of the gut and reconstituting colonization resistance is a promising strategy for preventing and treating rCDI. Fecal microbiota transplant (FMT) is safe and effective for the treatment of rCDI. However, limitations of FMT have prompted investigation into alternative microbiome therapeutics. These alternative microbiome therapies require further evaluation, and adaptive trial designs should be strongly considered to more rapidly discern variables including the need for bowel preparation, timing and selection of pre-treatment antibiotics, and dose and duration of microbiome therapeutics. A broad range of adverse events must be prospectively evaluated in these controlled trials, as microbiome therapeutics have the potential for numerous effects. Future studies will lead to a greater understanding of the mechanisms by which microbiome therapies can break the cycle of rCDI, which should ultimately yield a personalized approach to rCDI treatment that restores an individual's specific deficit(s) in colonization resistance to C. difficile.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
8
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
9
|
Chiu CW, Tsai PJ, Lee CC, Ko WC, Hung YP. Inhibition of spores to prevent the recurrence of Clostridioides difficile infection - A possibility or an improbability? JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:1011-1017. [PMID: 34229970 DOI: 10.1016/j.jmii.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Clostridioides difficile is one of the most common nosocomial gastrointestinal pathogens, and recurrence is a problematic issue because approximately 20-30% of patients experience at least one episode of recurrence, even after treatment with a therapeutic drug of choice for C. difficile infection (CDI), such as vancomycin. CDI recurrence has a multifactorial complex mechanism, in which gut microbiota disruption coincident with viable C. difficile spores, is considered the most important factor. The effectiveness of an anti-C. difficile antimicrobial agent against CDI cannot guarantee its inhibitory effect on C. difficile spores and vice versa. However, an antimicrobial agent, such as fidaxomicin, which has a good inhibitory effect on both C. difficile vegetative cells and spores is assumed to not only treat CDI but also prevent its recurrence. Prolonged adherence to the exosporium has been proposed as a possible mechanism of inhibiting spores, and as a result, redesigning anti-C. difficile antimicrobial agents with the ability to adhere to the exosporium may provide another pathway for the development of anti-C. difficile spore agents. For example, vancomycin lacks an inhibitory effect against C. difficile spores, but a vancomycin-loaded spore-targeting iron oxide nanoparticle that selectively binds to C. difficile spores has been developed to successfully delay spore germination. Some new antimicrobial agents in phase II clinical trials, including cadazolid and ridinilazole, have shown exceptional anti-C. difficile and spore-inhibiting effects that can be expected to not only treat CDI but also prevent its recurrence in the future.
Collapse
Affiliation(s)
- Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan.
| |
Collapse
|
10
|
Gonzales-Luna AJ, Spinler JK, Oezguen N, Khan MAW, Danhof HA, Endres BT, Alam MJ, Begum K, Lancaster C, Costa GP, Savidge TC, Hurdle JG, Britton R, Garey KW. Systems biology evaluation of refractory Clostridioides difficile infection including multiple failures of fecal microbiota transplantation. Anaerobe 2021; 70:102387. [PMID: 34044101 DOI: 10.1016/j.anaerobe.2021.102387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) aims to cure Clostridioides difficile infection (CDI) through reestablishing a healthy microbiome and restoring colonization resistance. Although often effective after one infusion, patients with continued microbiome disruptions may require multiple FMTs. In this N-of-1 study, we use a systems biology approach to evaluate CDI in a patient receiving chronic suppressive antibiotics with four failed FMTs over two years. METHODS Seven stool samples were obtained between 2016-18 while the patient underwent five FMTs. Stool samples were cultured for C. difficile and underwent microbial characterization and functional gene analysis using shotgun metagenomics. C. difficile isolates were characterized through ribotyping, whole genome sequencing, metabolic pathway analysis, and minimum inhibitory concentration (MIC) determinations. RESULTS Growing ten strains from each sample, the index and first four recurrent cultures were single strain ribotype F078-126, the fifth was a mixed culture of ribotypes F002 and F054, and the final culture was ribotype F002. One single nucleotide polymorphism (SNP) variant was identified in the RNA polymerase (RNAP) β-subunit RpoB in the final isolated F078-126 strain when compared to previous F078-126 isolates. This SNV was associated with metabolic shifts but phenotypic differences in fidaxomicin MIC were not observed. Microbiome differences were observed over time during vancomycin therapy and after failed FMTs. CONCLUSION This study highlights the importance of antimicrobial stewardship in patients receiving FMT. Continued antibiotics play a destructive role on a transplanted microbiome and applies selection pressure for resistance to the few antibiotics available to treat CDI.
Collapse
|
11
|
Turner NA, Warren BG, Gergen-Teague MF, Addison RM, Addison B, Rutala WA, Weber DJ, Sexton DJ, Anderson DJ. Impact of Oral Metronidazole, Vancomycin, and Fidaxomicin on Host Shedding and Environmental Contamination with Clostridioides difficile. Clin Infect Dis 2021; 74:648-656. [PMID: 34017999 DOI: 10.1093/cid/ciab473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Shedding of Clostridioides difficile spores from infected individuals contaminates the hospital environment and contributes to infection transmission. We assessed whether antibiotic selection impacts C. difficile shedding and contamination of the hospital environment. METHODS In this prospective, unblinded, randomized controlled trial of hospitalized adults with C. difficile infection, subjects were randomized 1:1:1 to receive fidaxomicin, oral vancomycin, or metronidazole. The primary outcome was change in environmental contamination rate while on treatment. Secondary outcomes included stool shedding, total burden of contamination, and molecular relatedness of stool versus environmental C. difficile isolates. RESULTS 33 patients were enrolled and 31 (94%) completed the study. Fidaxomicin (-0.36 log10 CFU/day, 95% CI -0.52 to -0.19, p<0.01) and vancomycin (-0.17 log10 CFU/day, 95% CI -0.34 to -0.01, p=0.05) were associated with more rapid decline in C. difficile shedding compared to metronidazole (-0.01 log10 CFU/day, 95% CI -0.10 to +0.08). Both vancomycin (6.3%, 95% CI 4.7-8.3%) and fidaxomicin (13.1%, 95% CI 10.7-15.9%) were associated with lower rates of environmental contamination than metronidazole (21.4%, 95% CI 18.0-25.2%). When specifically modeling within-subject change over time, fidaxomicin (aOR 0.83, 95% CI 0.70-0.99, p=0.04) was associated with more rapid decline in environmental contamination than vancomycin or metronidazole. Overall, 207 of 233 (88.8%) of environmental C. difficile isolates matched subject stool isolates by ribotyping, without significant difference by treatment. CONCLUSIONS Fidaxomicin, and to a lesser extent vancomycin, reduces C. difficile shedding and contamination of the hospital environment relative to metronidazole. Treatment choice may play a role in reducing healthcare-associated C. difficile transmission.
Collapse
Affiliation(s)
- Nicholas A Turner
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| | - Bobby G Warren
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| | - Maria F Gergen-Teague
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel M Addison
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| | - Bechtler Addison
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel J Sexton
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| | - Deverick J Anderson
- Duke University School of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA.,Duke Infection Control Outreach Network, Durham, North Carolina, USA
| |
Collapse
|
12
|
Bassères E, Endres BT, Montes-Bravo N, Pérez-Soto N, Rashid T, Lancaster C, Begum K, Alam MJ, Paredes-Sabja D, Garey KW. Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe 2021; 69:102352. [PMID: 33640461 DOI: 10.1016/j.anaerobe.2021.102352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fidaxomicin has novel pharmacologic effects on C. difficile spore formation including outgrowth inhibition and persistent spore attachment. However, the mechanism of fidaxomicin attachment on spores has not undergone rigorous microscopic studies. MATERIALS & METHODS Fidaxomicin attachment to C. difficile spores of three distinct ribotypes and C. difficile mutant spores with inactivation of exosporium or spore-coat protein-coding genes were visualized using confocal microscopy with a fidaxomicin-bodipy compound (green fluorescence). The pharmacologic effect of the fidaxomicin-bodipy compound was determined. Confocal microscopy experiments included direct effect on C. difficile wild-type and mutant spores, effect of exosporium removal, and direct attachment to a comparator spore forming organism, Bacillus subtilis. RESULTS The fidaxomicin-bodipy compound MIC was 1 mg/L compared to 0.06 mg/L for unlabeled fidaxomicin, a 16-fold increase. Using confocal microscopy, the intracellular localization of fidaxomicin into vegetative C. difficile cells was observed consistent with its RNA polymerase mechanism of action and inhibited spore outgrowth. The fidaxomicin-bodipy compound was visualized outside of the core of C. difficile spores with no co-localization with the membrane staining dye FM4-64. Exosporium removal reduced fidaxomicin-bodipy association with C. difficile spores. Reduced fidaxomicin-bodipy was observed in C. difficile mutant spores for the spore surface proteins CdeC and CotE. CONCLUSION This study visualized a direct attachment of fidaxomicin to C. difficile spores that was diminished with mutants of specific exosporium and spore coat proteins. These data provide advanced insight regarding the anti-spore properties of fidaxomicin.
Collapse
Affiliation(s)
| | | | - Nicolás Montes-Bravo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Nicolás Pérez-Soto
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Tasnuva Rashid
- University of Houston College of Pharmacy, Houston, TX, USA
| | | | - Khurshida Begum
- University of Houston College of Pharmacy, Houston, TX, USA.
| | | | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
13
|
Budi N, Safdar N, Rose WE. Treatment issues in recurrent Clostridioides difficile infections and the possible role of germinants. FEMS MICROBES 2020; 1:xtaa001. [PMID: 37333958 PMCID: PMC10117431 DOI: 10.1093/femsmc/xtaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile is the number one cause of hospital-acquired infections in the United States and one of the CDC's urgent-level pathogen threats. The inflammation caused by pathogenic C. difficile results in diarrhea and pseudomembranous colitis. Patients who undergo clinically successful treatment for this disease commonly experience recurrent infections. Current treatment options can eradicate the vegetative cell form of the bacteria but do not impact the spore form, which is impervious to antibiotics and resists conventional environmental cleaning procedures. Antibiotics used in treating C. difficile infections (CDI) often do not eradicate the pathogen and can prevent regeneration of the microbiome, leaving them vulnerable to recurrent CDI and future infections upon subsequent non-CDI-directed antibiotic therapy. Addressing the management of C. difficile spores in the gastrointestinal (GI) tract is important to make further progress in CDI treatment. Currently, no treatment options focus on reducing GI spores throughout CDI antibiotic therapy. This review focuses on colonization of the GI tract, current treatment options and potential treatment directions emphasizing germinant with antibiotic combinations to prevent recurrent disease.
Collapse
Affiliation(s)
- Noah Budi
- Corresponding author: School of Pharmacy, University of Wisconsin-Madison, Room 4123, 777 Highland Avenue, Madison, WI 53705, USA. Tel: +1-920-419-7704; E-mail:
| | - Nasia Safdar
- Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA, 53726
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA, 53705
| |
Collapse
|
14
|
Skinner AM, Scardina T, Kociolek LK. Fidaxomicin for the treatment of Clostridioides difficile in children. Future Microbiol 2020; 15:967-979. [PMID: 32715754 DOI: 10.2217/fmb-2020-0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fidaxomicin is an oral narrow-spectrum novel 18-membered macrocyclic antibiotic that was initially approved in 2011 by the US FDA for the treatment of Clostridioides difficile infections (CDI) in adults. In February 2020, the FDA approved fidaxomicin for the treatment of CDI in children age >6 months. In adults, fidaxomicin is as efficacious as vancomycin in treating CDI and reduces the risk of recurrent CDI. An investigator-blinded, randomized, multicenter, multinational clinical trial comparing the efficacy and safety of fidaxomicin with vancomycin in children was recently published confirming similar findings as previously reported in adults. Fidaxomicin is the first FDA-approved treatment for CDI in children and offers a promising option for reducing recurrent CDI in this population.
Collapse
Affiliation(s)
- Andrew M Skinner
- Department of Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| | - Tonya Scardina
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Mody D, Athamneh AIM, Seleem MN. Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. J Glob Antimicrob Resist 2019; 21:154-161. [PMID: 31622683 DOI: 10.1016/j.jgar.2019.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The rapid emergence of hypervirulent Clostridium difficile (C. difficile) isolates and the paucity of effective anti-clostridial antibiotics call for extensive research to identify new treatment options. This study aimed to test the anti-clostridial activity of bioactive extracts of turmeric, which is a natural herb widely known for its profound medicinal properties. METHODS The MICs of turmeric derivatives were determined against 27 C. difficile strains, including hypervirulent (BI/NAP1/027) and clinical toxigenic isolates. Additionally, their ability to inhibit C. difficile toxin production and spore formation was investigated. Furthermore, the safety profiles of turmeric derivatives regarding their effects on human gut microflora - such as Bacteroides, Lactobacillus and Bifidobacterium - were evaluated. RESULTS Curcuminoids, the major phytoconstituents of turmeric - including curcumin, demethoxycurcumin and bisdemethoxycurcumin - inhibited growth of C. difficile at concentrations ranging from 4 to 32μg/mL. Additionally, curcuminoids showed no negative effect on major populating species of the human gut. Curcumin was more effective than fidaxomicin in inhibiting C. difficile toxin production, but less so in inhibiting spore formation. CONCLUSION The findings suggest that curcumin has potential as an anti-clostridial agent. More work is needed to further investigate the efficacy of curcumin as a stand-alone drug or as a supplement of current drugs of choice, as it has no antagonistic activities but might overcome their drawbacks.
Collapse
Affiliation(s)
- Deepansh Mody
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Ahmad I M Athamneh
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
16
|
Takeda S, Miki T. [Antimicrobial profile and clinical evidence of fidaxomicin (Dafclir ®), a therapeutic agent for Clostridioides (Clostridium) difficile infection]. Nihon Yakurigaku Zasshi 2019; 154:217-229. [PMID: 31597902 DOI: 10.1254/fpj.154.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fidaxomicin (Dafclir® Tablets 200 mg) is a member of a novel class of oral, 18-membered macrocyclic antibiotic agents used for the treatment of patients with Clostridioides (Clostridium) difficile (C. difficile) infection (CDI), approved in Japan in July 2018. Preclinical studies demonstrated that fidaxomicin inhibits RNA synthesis by bacterial DNA-dependent RNA polymerase derived from C. difficile, shows antibacterial activities against C. difficile clinically isolated in Japan, and is bactericidal against C. difficile. Fidaxomicin was less likely to disrupt gut microflora due to its narrow antimicrobial spectrum, showing antibacterial activities against limited gram-positive bacteria including C. difficile, but not against gram-negative bacteria, as determined by minimum inhibitory concentration (MIC) measurement against American Type Culture Collection strains. Fidaxomicin inhibited spore production, subsequent spore recovery/outgrowth after removal of fidaxomicin, outgrowth to vegetative cells, and toxin production under fidaxomicin at lower MIC. Additionally, it had protective effects on lethal CDI in animal models. In clinical studies conducted in Europe, US, and Japan, fidaxomicin 200 mg twice daily for 10 days showed higher clinical cure, higher global cure (cure with no recurrence), and lower recurrence rate compared with oral vancomycin 125 mg four times daily for 10 days. Adverse events observed in the fidaxomicin group were similar to those in the vancomycin group, and no clinically important findings regarding safety and tolerability were reported. In conclusion, in vitro, in vivo and clinical evidence indicate that fidaxomicin is an effective treatment for C. difficile, with limited disruption to gut microflora, for adult patients with CDI in Japan.
Collapse
Affiliation(s)
- Shinobu Takeda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc
| | - Takashi Miki
- Japan-Asia Clinical Development II, Development, Astellas Pharma Inc
| |
Collapse
|
17
|
Pickering DS, Vernon JJ, Freeman J, Wilcox MH, Chilton CH. Investigating the transient and persistent effects of heat on Clostridium difficile spores. J Med Microbiol 2019; 68:1445-1454. [PMID: 31429817 DOI: 10.1099/jmm.0.001048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose. Clostridium difficile spores are extremely resilient to high temperatures. Sublethal temperatures are associated with the 'reactivation' of dormant spores, and are utilized to maximize C. difficile spore recovery. Spore eradication is of vital importance to the food industry. The current study seeks to elucidate the transient and persisting effects of heating C. difficile spores at various temperatures.Methods. Spores of five C. difficile strains of different ribotypes (001, 015, 020, 027 and 078) were heated at 50, 60 and 70-80 °C for 60 min in phosphate-buffered saline (PBS) and enumerated at 0, 15, 30, 45 and 60 min. GInaFiT was used to model the kinetics of spore inactivation. In subsequent experiments, spores were transferred to enriched brain heart infusion (BHI) broths after 10 min of 80 °C heat treatment in PBS; samples were enumerated at 90 min and 24 h.Results. The spores of all strains demonstrated log-linear inactivation with tailing when heated for 60 min at 80 °C [(x̄=7.54±0.04 log10 vs 4.72±0.09 log10 colony-forming units (c.f.u.) ml- 1; P<0.001]. At 70 °C, all strains except 078 exhibited substantial decline in recovery over 60 min. Interestingly, 50 °C heat treatment had an inhibitory effect on 078 spore recovery at 0 vs 60 min (7.61±0.06 log10 c.f.u. ml- 1 vs 6.13±0.05 log10 c.f.u. ml- 1; P<0.001). Heating at 70/80 °C inhibited the initial germination and outgrowth of both newly produced and aged spores in enriched broths. This inhibition appeared to be transient; after 24 h vegetative counts were higher in heat-treated vs non-heat-treated spores (x̄=7.65±0.04 log10 c.f.u. ml- 1 vs 6.79±0.06 log10 c.f.u. ml- 1; P<0.001).Conclusions. The 078 spores were more resistant to the inhibitory effects of higher temperatures. Heat initially inhibits spore germination, but the subsequent outgrowth of vegetative populations accelerates after the initial inhibitory period.
Collapse
Affiliation(s)
- D S Pickering
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - J J Vernon
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - J Freeman
- Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - M H Wilcox
- Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK.,Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - C H Chilton
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| |
Collapse
|
18
|
Biggs M, Iqbal T, Holden E, Clewer V, Garvey M. Effect of using fidaxomicin on recurrent Clostridium difficile infection. J Hosp Infect 2019; 102:165-167. [DOI: 10.1016/j.jhin.2018.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
|
19
|
Saha S, Khanna S. Management of Clostridioides difficile colitis: insights for the gastroenterologist. Therap Adv Gastroenterol 2019; 12:1756284819847651. [PMID: 31105766 PMCID: PMC6505238 DOI: 10.1177/1756284819847651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a common cause of diarrhea in both inpatient and outpatient settings. The last few years have seen major changes in the treatment spectrum of CDI, most notably, recommendations against using metronidazole for initial CDI, the addition of fidaxomicin and bezlotoxumab, and emergence of microbial replacement therapies. Several other therapies are undergoing clinical trials. This narrative review focuses on the treatment of CDI with a summary of literature on the newer modalities and the treatment guidelines issued by Infectious Diseases Society of America and European Society of Clinical Microbiology and Infectious Diseases.
Collapse
Affiliation(s)
- Srishti Saha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Comparison of the 2010 and 2017 Infectious Diseases Society of America guidelines on the diagnosis and treatment of Clostridium difficile infection. Curr Opin Gastroenterol 2019; 35:20-24. [PMID: 30394898 DOI: 10.1097/mog.0000000000000489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To highlights the key changes in the updated Infectious Diseases Society of America and Society for Healthcare Epidemiology of America guidelines with respect to the diagnosis and treatment of Clostridium difficile infection (CDI). RECENT FINDINGS CDI continues as a major threat to healthcare institutions and as a community-associated infection related primarily to antibiotic exposure. Infectious Diseases Society of America/Society for Healthcare Epidemiology of America produced extensive CDI guidelines in 2010; in 2018, updated guidance has been published. The new guidelines include key changes with respect to the treatment and diagnosis of CDI. SUMMARY Updated, evidence guidelines allow optimization of the diagnosis of CDI and the use of therapeutic interventions, in particular to reduce the risk of recurrent infection.
Collapse
|
21
|
Pizarro-Guajardo M, Cristina Ravanal M, Daniela Paez M, Callegari E, Paredes-Sabja D. Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics Clin Appl 2018; 12:e1700182. [PMID: 29573213 PMCID: PMC6370038 DOI: 10.1002/prca.201700182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Clostridium difficile infections are the leading cause of diarrhea associated with the use of antibiotics. During infection, C. difficile initiates a sporulation cycle leading to the persistence of C. difficile spores in the host and disease dissemination. The development of vaccine and passive immunization therapies against C. difficile has focused on toxins A and B. In this study, an immunoproteome-based approach to identify immunogenic proteins located on the outer layers of C. difficile spores as potential candidates for the development of immunotherapy and/or diagnostic methods against this devastating infection is used. EXPERIMENTAL DESIGN To identify potential immunogenic proteins on the surface of C. difficile R20291, spore coat/exosporium extracts are separated by 2D electrophoresis (2-DE) and analyzed for reactivity against C. difficile spore-specific goat sera. Finally, the selected spots are in-gel digested with chymotrypsin, peptides generated are separated by nanoUPLC followed by MS/MS using Quad-TOF-MS, corroborated by Ultimate 3000RS-nano-UHPLC coupled to Q-Exactive-Plus-Orbitrap MS. RESULTS The analysis identify five immunoreactive proteins: spore coat proteins CotE, CotA, and CotCB; exosporium protein CdeC; and a cytosolic methyltransferase. CONCLUSION This data provides a list of spore surface protein candidates as antigens for vaccine development against C. difficile infections.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - María Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Maria Daniela Paez
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
James GA, Chesnel L, Boegli L, deLancey Pulcini E, Fisher S, Stewart PS. Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment. J Antimicrob Chemother 2018; 73:102-108. [PMID: 29029221 DOI: 10.1093/jac/dkx353] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Background Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. Objectives In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. Methods C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. Results Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. Conclusions Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.
Collapse
Affiliation(s)
- Garth A James
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | | - Laura Boegli
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | | - Steve Fisher
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
23
|
DuPont HL. Search for the optimal antimicrobial therapy of Clostridium difficile infection. THE LANCET. INFECTIOUS DISEASES 2018; 18:936-937. [PMID: 30025912 DOI: 10.1016/s1473-3099(18)30308-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Herbert L DuPont
- Center of Infectious Diseases, Department of Epidemiology and Department of Internal Medicine, University of Texas Medical School and School of Public Health, Houston, TX 77030, USA; Kelsey Research Foundation, Houston, TX, USA.
| |
Collapse
|
24
|
Chilton C, Pickering D, Freeman J. Microbiologic factors affecting Clostridium difficile recurrence. Clin Microbiol Infect 2018; 24:476-482. [DOI: 10.1016/j.cmi.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
25
|
Impact of Oral Fidaxomicin Administration on the Intestinal Microbiota and Susceptibility to Clostridium difficile Colonization in Mice. Antimicrob Agents Chemother 2018; 62:AAC.02112-17. [PMID: 29463537 DOI: 10.1128/aac.02112-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile infection (CDI), a common cause of hospital-acquired infections, typically occurs after disruption of the normal gut microbiome by broad-spectrum antibiotics. Fidaxomicin is a narrow-spectrum antibiotic that demonstrates a reduced impact on the normal gut microbiota and is approved for the treatment of CDI. To further explore the benefits of this property, we used a murine model to examine the effects of fidaxomicin versus vancomycin on gut microbiota and susceptibility to C. difficile colonization while tracking microbiota recovery over time. Mice were exposed to fidaxomicin or vancomycin by oral gavage for 3 days and subsequently challenged with C. difficile spores at predetermined time points up to 21 days postexposure to antibiotics. Fecal samples were subsequently collected for analysis. Twenty-four hours postchallenge, mice were euthanized and the colon contents harvested. The microbiota was characterized using 16S rRNA gene sequencing. All fidaxomicin-exposed mice (except for one at day 8) were resistant to C. difficile colonization. However, 9 of 15 vancomycin-exposed mice were susceptible to C. difficile colonization until day 12. All vancomycin-exposed mice recovered colonization resistance by day 16. Bacterial diversity was similar prior to antibiotic exposure in both arms and decreased substantially after exposure. A shift in taxonomic structure and composition occurred after both exposures; however, the shift was greater in vancomycin-exposed than in fidaxomicin-exposed mice. In summary, compared with vancomycin, fidaxomicin exposure had less impact on microbiota composition, promoted faster microbial recovery, and had less impact on the loss of C. difficile colonization resistance.
Collapse
|
26
|
Mitachi K, Yun HG, Kurosu SM, Eslamimehr S, Lemieux MR, Klaić L, Clemons WM, Kurosu M. Novel FR-900493 Analogues That Inhibit the Outgrowth of Clostridium difficile Spores. ACS OMEGA 2018; 3:1726-1739. [PMID: 29503973 PMCID: PMC5830699 DOI: 10.1021/acsomega.7b01740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 05/08/2023]
Abstract
The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 μM concentration.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sara M. Kurosu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Shakiba Eslamimehr
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Maddie R. Lemieux
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Lada Klaić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - William M. Clemons
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Michio Kurosu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
- E-mail: . Phone: 901-448-1045. Fax: 901-448-6940 (M.K.)
| |
Collapse
|
27
|
Pickering DS, Vernon JJ, Freeman J, Wilcox MH, Chilton CH. Investigating the effect of supplementation on Clostridioides (Clostridium) difficile spore recovery in two solid agars. Anaerobe 2018; 50:38-43. [PMID: 29408598 DOI: 10.1016/j.anaerobe.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND A variety of supplemented solid media are used within Clostridium difficile research to optimally recover spores. Our study sought to investigate different media and additives, providing a method of optimised C. difficile spore recovery. Additionally, due to the results observed in the initial experiments, the inhibitory effects of three amino acids (glycine, l-histidine &l-phenylalanine) on C. difficile spore outgrowth were investigated. METHODS Spores of five C. difficile strains (PCR ribotypes 001,015,020,027,078) were recovered on two commonly used solid media (BHI & CCEY, or cycloserine-cefoxitin egg yolk) supplemented with various concentrations of germinants (taurocholate, glycine & lysozyme). Agar-incorporation minimum inhibitory concentration (MIC) testing was carried out for glycine and taurocholate on vegetative cells and spores of all five strains. Additionally a BHI broth microassay method was utilised to test the growth of C. difficile in the presence of increasing concentrations (0,1,2,3,4%) of three amino acids (glycine,l-histidine,l-phenyalanine). RESULTS CCEY agar alone and BHI supplemented with taurocholate (0.1/1%) provided optimal recovery for C. difficile spores. Glycine was inhibitory to spore recovery at higher concentrations, although these varied between the two media used. In agar-incorporated MIC testing, glycine concentrations higher than 2% (20 g/L) were inhibitory to both C. difficile spore and vegetative cell growth versus the control (mean absorbance = 0.33 ± 0.02 vs 0.12 ± 0.01) (P < 0.001). This indicates a potential mechanism whereby glycine interferes with vegetative cell growth. Further microbroth testing provided evidence of inhibition by two amino acids other than glycine, l-histidine and l-phenylalanine. CONCLUSIONS We provide two media for optimal recovery of C. difficile spores (CCEY alone and BHI supplemented with 0.1/1% taurocholate). CCEY is preferred for isolation from faecal samples. For pure cultures, either CCEY or supplemented BHI agar are appropriate. The inhibitory nature of three amino acids (glycine,l-histidine,l-phenylalanine) to C. difficile vegetative cell proliferation is also highlighted.
Collapse
Affiliation(s)
- D S Pickering
- Healthcare Associated Infections Research Group, Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK.
| | - J J Vernon
- Healthcare Associated Infections Research Group, Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - J Freeman
- Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - M H Wilcox
- Healthcare Associated Infections Research Group, Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK; Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - C H Chilton
- Healthcare Associated Infections Research Group, Molecular Gastroenterology, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| |
Collapse
|
28
|
Burton HE, Mitchell SA, Watt M. A Systematic Literature Review of Economic Evaluations of Antibiotic Treatments for Clostridium difficile Infection. PHARMACOECONOMICS 2017; 35:1123-1140. [PMID: 28875314 PMCID: PMC5656734 DOI: 10.1007/s40273-017-0540-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Clostridium difficile infection (CDI) is associated with high management costs, particularly in recurrent cases. Fidaxomicin treatment results in lower recurrence rates than vancomycin and metronidazole, but has higher acquisition costs in Europe and the USA. This systematic literature review summarises economic evaluations (EEs) of fidaxomicin, vancomycin and metronidazole for treatment of CDI. METHODS Electronic databases (MEDLINE®, Embase, Cochrane Library) and conference proceedings (ISPOR, ECCMID, ICAAC and IDWeek) were searched for publications reporting EEs of fidaxomicin, vancomycin and/or metronidazole in the treatment of CDI. Reference bibliographies of identified manuscripts were also reviewed. Cost-effectiveness was evaluated according to the overall population of patients with CDI, as well as in subgroups with severe CDI or recurrent CDI, or those at higher risk of recurrence or mortality. RESULTS Overall, 27 relevant EEs, conducted from the perspective of 12 different countries, were identified. Fidaxomicin was cost-effective versus vancomycin and/or metronidazole in 14 of 24 EEs (58.3%), vancomycin was cost-effective versus fidaxomicin and/or metronidazole in five of 27 EEs (18.5%) and metronidazole was cost-effective versus fidaxomicin and/or vancomycin in two of 13 EEs (15.4%). Fidaxomicin was cost-effective versus vancomycin in most of the EEs evaluating specific patient subgroups. Key cost-effectiveness drivers were cure rate, recurrence rate, time horizon, drug costs and length and cost of hospitalisation. CONCLUSIONS In most EEs, fidaxomicin was demonstrated to be cost-effective versus metronidazole and vancomycin in patients with CDI. These results have relevance to clinical practice, given the high budgetary impact of managing CDI and increasing restrictions on healthcare budgets. OTHER This analysis was initiated and funded by Astellas Pharma Inc.
Collapse
Affiliation(s)
| | | | - Maureen Watt
- Astellas Pharma Inc., 2000 Hillswood Drive, Chertsey, KT16 0RS UK
| |
Collapse
|