1
|
Guo R, Xu M, Yang K, Gao T, Zhu J, Liu W, Yuan F, Liu Z, Li C, Wu Q, Nawaz S, Zhou D, Tian Y. Isolation, identification and characteristics of Bibersteinia trehalosi from goat. Microb Pathog 2024; 191:106678. [PMID: 38718954 DOI: 10.1016/j.micpath.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to β-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| |
Collapse
|
2
|
Melchner A, van de Berg S, Scuda N, Feuerstein A, Hanczaruk M, Schumacher M, Straubinger RK, Marosevic D, Riehm JM. Antimicrobial Resistance in Isolates from Cattle with Bovine Respiratory Disease in Bavaria, Germany. Antibiotics (Basel) 2021; 10:antibiotics10121538. [PMID: 34943750 PMCID: PMC8698709 DOI: 10.3390/antibiotics10121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patterns of antimicrobial resistance (AMR) regarding Pasteurella multocida (n = 345), Mannheimia haemolytica (n = 273), Truperella pyogenes (n = 119), and Bibersteinia trehalosi (n = 17) isolated from calves, cattle and dairy cows with putative bovine respiratory disease syndrome were determined. The aim of this study was to investigate temporal trends in AMR and the influence of epidemiological parameters for the geographic origin in Bavaria, Germany, between July 2015 and June 2020. Spectinomycin was the only antimicrobial agent with a significant decrease regarding not susceptible isolates within the study period (P. multocida 88.89% to 67.82%, M. haemolytica 90.24% to 68.00%). Regarding P. multocida, significant increasing rates of not susceptible isolates were found for the antimicrobials tulathromycin (5.56% to 26.44%) and tetracycline (18.52% to 57.47%). The proportions of multidrug-resistant (MDR) P. multocida isolates (n = 48) increased significantly from 3.70% to 22.90%. The proportions of MDR M. haemolytica and P. multocida isolates (n = 62) were significantly higher in fattening farms (14.92%) compared to dairy farms (3.29%) and also significantly higher on farms with more than 300 animals (19.49%) compared to farms with 100 animals or less (6.92%). The data underline the importance of the epidemiological farm characteristics, here farm type and herd size regarding the investigation of AMR.
Collapse
Affiliation(s)
- Alexander Melchner
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Sarah van de Berg
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Andrea Feuerstein
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Magdalena Schumacher
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany;
| | - Durdica Marosevic
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
- Correspondence:
| |
Collapse
|
3
|
Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 2020; 368:1449-1454. [PMID: 32587015 DOI: 10.1126/science.aaz1646] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/12/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Gene regulation is chiefly determined at the level of individual linear chromatin molecules, yet our current understanding of cis-regulatory architectures derives from fragmented sampling of large numbers of disparate molecules. We developed an approach for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using nonspecific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing of chromatin stencils enabled nucleotide-resolution readout of the primary architecture of multikilobase chromatin fibers (Fiber-seq). Fiber-seq exposed widespread plasticity in the linear organization of individual chromatin fibers and illuminated principles guiding regulatory DNA actuation, the coordinated actuation of neighboring regulatory elements, single-molecule nucleosome positioning, and single-molecule transcription factor occupancy. Our approach and results open new vistas on the primary architecture of gene regulation.
Collapse
Affiliation(s)
- Andrew B Stergachis
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian M Debo
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA. .,Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Zhao L, Song Y, Li L, Gan N, Brand JJ, Song L. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis. HARMFUL ALGAE 2018; 75:87-93. [PMID: 29778228 DOI: 10.1016/j.hal.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of harmful Microcystis blooms is increasing in frequency in a myriad of freshwater ecosystems. Despite considerable research pertaining to the cause and nature of these blooms, the molecular mechanisms behind the cosmopolitan distribution and phenotypic diversity in Microcystis are still unclear. We compared the patterns and extent of DNA methylation in three strains of Microcystis, PCC 7806SL, NIES-2549 and FACHB-1757, using Single Molecule Real-Time (SMRT) sequencing technology. Intact restriction-modification (R-M) systems were identified from the genomes of these strains, and from two previously sequenced strains of Microcystis, NIES-843 and TAIHU98. A large number of methylation motifs and R-M genes were identified in these strains, which differ substantially among different strains. Of the 35 motifs identified, eighteen had not previously been reported. Strain NIES-843 contains a larger number of total putative methyltransferase genes than have been reported previously from any bacterial genome. Genomic comparisons reveal that methyltransferases (some partial) may have been acquired from the environment through horizontal gene transfer.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yulong Song
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jerry J Brand
- The UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|