1
|
Le Montagner P, Guilbaud M, Miot-Sertier C, Brocard L, Albertin W, Ballestra P, Dols-Lafargue M, Renouf V, Moine V, Bellon-Fontaine MN, Masneuf-Pomarède I. High intraspecific variation of the cell surface physico-chemical and bioadhesion properties in Brettanomyces bruxellensis. Food Microbiol 2023; 112:104217. [PMID: 36906300 DOI: 10.1016/j.fm.2023.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.
Collapse
Affiliation(s)
- Paul Le Montagner
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Laboratoire EXCELL, Floirac, France; Biolaffort, Floirac, France.
| | - Morgan Guilbaud
- Univ. Paris-Saclay, SayFood, AgroParisTech, INRAE UMR 782, 91300, Massy, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420, CNRS, 33000, Bordeaux, France
| | - Warren Albertin
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Patricia Ballestra
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | | | | | | | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Bordeaux Sciences Agro, 33175, Gradignan, France
| |
Collapse
|
2
|
Toolbox for Genetic Transformation of Non-Conventional Saccharomycotina Yeasts: High Efficiency Transformation of Yeasts Belonging to the Schwanniomyces Genus. J Fungi (Basel) 2022; 8:jof8050531. [PMID: 35628786 PMCID: PMC9146037 DOI: 10.3390/jof8050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Non-conventional yeasts are increasingly being investigated and used as producers in biotechnological processes which often offer advantages in comparison to traditional and well-established systems. Most biotechnologically interesting non-conventional yeasts belong to the Saccharomycotina subphylum, including those already in use (Pichia pastoris, Yarrowia lypolitica, etc.), as well as those that are promising but as yet insufficiently characterized. Moreover, for many of these yeasts the basic tools of genetic engineering needed for strain construction, including a procedure for efficient genetic transformation, heterologous protein expression and precise genetic modification, are lacking. The first aim of this study was to construct a set of integrative and replicative plasmids which can be used in various yeasts across the Saccharomycotina subphylum. Additionally, we demonstrate here that the electroporation procedure we developed earlier for transformation of B. bruxellensis can be applied in various yeasts which, together with the constructed plasmids, makes a solid starting point when approaching a transformation of yeasts form the Saccharomycotina subphylum. To provide a proof of principle, we successfully transformed three species from the Schwanniomyces genus (S. polymorphus var. polymorphus, S. polymorphus var. africanus and S. pseudopolymorphus) with high efficiencies (up to 8 × 103 in case of illegitimate integration of non-homologous linear DNA and up to 4.7 × 105 in case of replicative plasmid). For the latter two species this is the first reported genetic transformation. Moreover, we found that a plasmid carrying replication origin from Scheffersomyces stipitis can be used as a replicative plasmid for these three Schwanniomyces species.
Collapse
|
3
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Gounot JS, Neuvéglise C, Freel KC, Devillers H, Piškur J, Friedrich A, Schacherer J. High Complexity and Degree of Genetic Variation in Brettanomyces bruxellensis Population. Genome Biol Evol 2021; 12:795-807. [PMID: 32302403 PMCID: PMC7313668 DOI: 10.1093/gbe/evaa077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Genome-wide characterization of genetic variants of a large population of individuals within the same species is essential to have a deeper insight into its evolutionary history as well as the genotype–phenotype relationship. Population genomic surveys have been performed in multiple yeast species, including the two model organisms, Saccharomyces cerevisiae and Schizosaccharomyces pombe. In this context, we sought to characterize at the population level the Brettanomyces bruxellensis yeast species, which is a major cause of wine spoilage and can contribute to the specific flavor profile of some Belgium beers. We have completely sequenced the genome of 53 B. bruxellensis strains isolated worldwide. The annotation of the reference genome allowed us to define the gene content of this species. As previously suggested, our genomic data clearly highlighted that genetic diversity variation is related to ploidy level, which is variable in the B. bruxellensis species. Genomes are punctuated by multiple loss-of-heterozygosity regions, whereas aneuploidies as well as segmental duplications are uncommon. Interestingly, triploid genomes are more prone to gene copy number variation than diploids. Finally, the pangenome of the species was reconstructed and was found to be small with few accessory genes compared with S. cerevisiae. The pangenome is composed of 5,409 ORFs (open reading frames) among which 5,106 core ORFs and 303 ORFs that are variable within the population. All these results highlight the different trajectories of species evolution and consequently the interest of establishing population genomic surveys in more populations.
Collapse
Affiliation(s)
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Kelle C Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jure Piškur
- Department of Biology, Lund University, Sweden
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
5
|
Chen Y, Zheng S, Zhang G, Luo J, Liu J, Peng X. Chemical, microbial, and metabolic analysis of Taisui cultured in honey solution. Food Sci Nutr 2021; 9:2158-2168. [PMID: 33841832 PMCID: PMC8020961 DOI: 10.1002/fsn3.2185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Taisui, a special substance occasionally found in China, can now be artificially cultured. In order to evaluate the safety of an artificially cultured Taisui (acTS) and develop it into fermented, functional food or oral liquid, the macronutrients, trace elements, microbial community, and extracellular metabolites of Taisui have been investigated in this study. Results showed that the concentrations of total carbohydrates, protein, fat, total ash, and moisture of wet acTS were 2.13 g/100 g, 0.13 g/100 g, 0.07 g/100 g, 0.04 g/100 g, and 88.3%, respectively. The concentrations of top three trace elements of K, Ca, and P, are 1,424.92 mg/kg, 159.96 mg/kg, and 67.89 mg/kg, respectively. Proteobacteria, Euryarchaeota, and Ascomycota were the dominant phyla of bacteria, archaea, and fungi, respectively. Uncultured_bacterium_f_Anaerolineaceae, Alcaligenes, and Ochrobactrum were the three most abundant genera of bacteria; Methanosaeta, Methanosphaera, and Natronomonas, the most abundant genera of archaea; Zygosaccharomyces, Mortierella, and Fusarium, the most abundant genera of fungi. There were 311 metabolites increased in acTS. Most of the metabolites are beneficial to human. These metabolites can be contributed to microbes in acTS. In conclusion, acTS is not a good source of macronutrients and of trace elements, while the safeness of some microorganisms in acTS is also unknown. Nevertheless, it still provides some probiotics and beneficial metabolites for human. It is thus possible to develop acTS into foods when the safety of each microorganism is proved.
Collapse
Affiliation(s)
- Yunjing Chen
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| | - Shuxiu Zheng
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| | - Guangwen Zhang
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| | - Jianming Luo
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| | - Junsheng Liu
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| | - Xichun Peng
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632China
| |
Collapse
|
6
|
Colomer MS, Chailyan A, Fennessy RT, Olsson KF, Johnsen L, Solodovnikova N, Forster J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front Microbiol 2020; 11:637. [PMID: 32373090 PMCID: PMC7177047 DOI: 10.3389/fmicb.2020.00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Brettanomyces yeasts have gained popularity in many sectors of the biotechnological industry, specifically in the field of beer production, but also in wine and ethanol production. Their unique properties enable Brettanomyces to outcompete conventional brewer’s yeast in industrially relevant traits such as production of ethanol and pleasant flavors. Recent advances in next-generation sequencing (NGS) and high-throughput screening techniques have facilitated large population studies allowing the selection of appropriate yeast strains with improved traits. In order to get a better understanding of Brettanomyces species and its potential for beer production, we sequenced the whole genome of 84 strains, which we make available to the scientific community and carried out several in vitro assays for brewing-relevant properties. The collection includes isolates from different substrates and geographical origin. Additionally, we have included two of the oldest Carlsberg Research Laboratory isolates. In this study, we reveal the phylogenetic pattern of Brettanomyces species by comparing the predicted proteomes of each strain. Furthermore, we show that the Brettanomyces collection is well described using similarity in genomic organization, and that there is a direct correlation between genomic background and phenotypic characteristics. Particularly, genomic patterns affecting flavor production, maltose assimilation, beta-glucosidase activity, and phenolic off-flavor (POF) production are reported. This knowledge yields new insights into Brettanomyces population survival strategies, artificial selection pressure, and loss of carbon assimilation traits. On a species-specific level, we have identified for the first time a POF negative Brettanomyces anomalus strain, without the main spoilage character of Brettanomyces species. This strain (CRL-90) has lost DaPAD1, making it incapable of converting ferulic acid to 4-ethylguaiacol (4-EG) and 4-ethylphenol (4-EP). This loss of function makes CRL-90 a good candidate for the production of characteristic Brettanomyces flavors in beverages, without the contaminant increase in POF. Overall, this study displays the potential of exploring Brettanomyces yeast species biodiversity to find strains with relevant properties applicable to the brewing industry.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark.,National Institute for Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Chailyan
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Ross T Fennessy
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Kim Friis Olsson
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | | | | | - Jochen Forster
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| |
Collapse
|
7
|
New advances on the Brettanomyces bruxellensis biofilm mode of life. Int J Food Microbiol 2019; 318:108464. [PMID: 31816527 DOI: 10.1016/j.ijfoodmicro.2019.108464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022]
Abstract
The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. The ability to form biofilm is a potential resistance strategy, although it has been given little attention so far for this yeast. In this work, the capacity to form biofilm and its structure were explored in YPD medium and in wine. Using microsatellite analysis, 65 isolates were discriminated into 5 different genetic groups from which 12 strains were selected. All 12 strains were able to form biofilm in YPD medium on a polystyrene surface. The presence of microcolonies, filamentous cells and extracellular polymeric substances, constituting the structure of the biofilm despite a small thickness, were highlighted using confocal and electronic microscopy. Moreover, different cell morphologies according to genetic groups were highlighted. The capacity to form biofilm in wine was also revealed for two selected strains. The impact of wine on biofilms was demonstrated with firstly considerable biofilm cell release and secondly growth of these released biofilm cells, both in a strain dependent manner. Finally, B. bruxellensis has been newly described as a producer of chlamydospore-like structures in wine, for both planktonic and biofilm lifestyles.
Collapse
|
8
|
May A, Narayanan S, Alcock J, Varsani A, Maley C, Aktipis A. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019; 7:e7565. [PMID: 31534844 PMCID: PMC6730531 DOI: 10.7717/peerj.7565] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Kombucha, a fermented tea beverage with an acidic and effervescent taste, is composed of a multispecies microbial ecosystem with complex interactions that are characterized by both cooperation and conflict. In kombucha, a complex community of bacteria and yeast initiates the fermentation of a starter tea (usually black or green tea with sugar), producing a biofilm that covers the liquid over several weeks. This happens through several fermentative phases that are characterized by cooperation and competition among the microbes within the kombucha solution. Yeast produce invertase as a public good that enables both yeast and bacteria to metabolize sugars. Bacteria produce a surface biofilm which may act as a public good providing protection from invaders, storage for resources, and greater access to oxygen for microbes embedded within it. The ethanol and acid produced during the fermentative process (by yeast and bacteria, respectively) may also help to protect the system from invasion by microbial competitors from the environment. Thus, kombucha can serve as a model system for addressing important questions about the evolution of cooperation and conflict in diverse multispecies systems. Further, it has the potential to be artificially selected to specialize it for particular human uses, including the development of antimicrobial ecosystems and novel materials. Finally, kombucha is easily-propagated, non-toxic, and inexpensive, making it an excellent system for scientific inquiry and citizen science.
Collapse
Affiliation(s)
- Alexander May
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Shrinath Narayanan
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Joe Alcock
- University of New Mexico, Albuquerque, NM, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Carlo Maley
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Varela C, Lleixà J, Curtin C, Borneman A. Development of a genetic transformation toolkit for Brettanomyces bruxellensis. FEMS Yeast Res 2019; 18:5049007. [PMID: 29982550 DOI: 10.1093/femsyr/foy070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Brettanomyces bruxellensis is usually considered a spoilage microorganism, responsible for significant economic losses during the production of fermented beverages such as wine, beer and cider, though for some styles of beer its influence is essential. In recent years, the competitiveness of this yeast in bioethanol production processes has brought to attention its broader biotechnological potential. Furthermore, the species has evolved key fermentation traits in parallel with Saccharomyces cerevisiae. Attempts to better understand B. bruxellensis physiology through genomics-driven research have been hampered by a lack of functional genomics tools. Genetic transformation for B. bruxellensis has only been developed recently and with limited efficiency. Here we describe gene transformation cassettes tailored for B. bruxellensis, which provide multiple drug-resistant markers and the ability to tag B. bruxellensis with different fluorescent proteins. All marker cassettes resulted in increased transformation efficiency compared to the maximum reported in literature, with one cassette, TDH1p natMX, showing five times greater efficiency. Transformation cassettes encoding fluorescent proteins enabled discrimination between subpopulations of transformed B. bruxellensis cells by flow cytometry and fluorescent microscopy. Thus, the genetic transformation toolkit described here unlocks several molecular applications such as strain tagging, insertional mutagenesis and potentially targeted gene deletion.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Jessica Lleixà
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C/ Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Chris Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
10
|
Tiukova IA, Pettersson ME, Hoeppner MP, Olsen RA, Käller M, Nielsen J, Dainat J, Lantz H, Söderberg J, Passoth V. Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS One 2019; 14:e0215077. [PMID: 31042716 PMCID: PMC6493715 DOI: 10.1371/journal.pone.0215077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Here, we present the genome of the industrial ethanol production strain Brettanomyces bruxellensis CBS 11270. The nuclear genome was found to be diploid, containing four chromosomes with sizes of ranging from 2.2 to 4.0 Mbp. A 75 Kbp mitochondrial genome was also identified. Comparing the homologous chromosomes, we detected that 0.32% of nucleotides were polymorphic, i.e. formed single nucleotide polymorphisms (SNPs), 40.6% of them were found in coding regions (i.e. 0.13% of all nucleotides formed SNPs and were in coding regions). In addition, 8,538 indels were found. The total number of protein coding genes was 4897, of them, 4,284 were annotated on chromosomes; and the mitochondrial genome contained 18 protein coding genes. Additionally, 595 genes, which were annotated, were on contigs not associated with chromosomes. A number of genes was duplicated, most of them as tandem repeats, including a six-gene cluster located on chromosome 3. There were also examples of interchromosomal gene duplications, including a duplication of a six-gene cluster, which was found on both chromosomes 1 and 4. Gene copy number analysis suggested loss of heterozygosity for 372 genes. This may reflect adaptation to relatively harsh but constant conditions of continuous fermentation. Analysis of gene topology showed that most of these losses occurred in clusters of more than one gene, the largest cluster comprising 33 genes. Comparative analysis against the wine isolate CBS 2499 revealed 88,534 SNPs and 8,133 indels. Moreover, when the scaffolds of the CBS 2499 genome assembly were aligned against the chromosomes of CBS 11270, many of them aligned completely, some have chunks aligned to different chromosomes, and some were in fact rearranged. Our findings indicate a highly dynamic genome within the species B. bruxellensis and a tendency towards reduction of gene number in long-term continuous cultivation.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| | - Mats E. Pettersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Marc P. Hoeppner
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Remi-Andre Olsen
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Max Käller
- Royal Institute of Technology, Biotechnology and Health, School of Engineering Sciences in Chemistry, SciLifeLab, Stockholm, Sweden
- Stockholm University, Department of Biochemistry and Biophysics, SciLifeLab, Stockholm, Sweden
| | - Jens Nielsen
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
| | - Jacques Dainat
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Henrik Lantz
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Jonas Söderberg
- Uppsala University, Department of Cell and Molecular Biology, Molecular Evolution, Uppsala, Sweden
| | - Volkmar Passoth
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Avramova M, Grbin P, Borneman A, Albertin W, Masneuf-Pomarède I, Varela C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res 2019; 19:5307081. [DOI: 10.1093/femsyr/foz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2019] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
Recent studies have suggested a strong niche adaptation for Brettanomyces bruxellensis strains according to human-related fermentation environments, including beer, wine and bioethanol. This is further supported by a correlation between B. bruxellensis genetic grouping and tolerance to SO2, the main antimicrobial used in wine. The allotriploid AWRI1499-like cluster, in particular, shows high SO2 tolerance suggesting that the genetic configuration observed for these strains may confer a selective advantage in winemaking conditions. To test this hypothesis, we evaluated the relative selective advantage of representatives of the three main B. bruxellensis genetic groups in presence of SO2. As a proof-of-concept and using recently developed transformation cassettes, we compared strains under different SO2 concentrations using pairwise competitive fitness experiments. Our results showed that AWRI1499 is specifically adapted to environments with high SO2 concentrations compared to other B. bruxellensis wine strains, indicating a potential correlation between allotriploidisation origin and environmental adaptation in this species. Additionally, our findings suggest different types of competition between strains, such as coexistence and exclusion, revealing new insights on B. bruxellensis interactions at intraspecies level.
Collapse
Affiliation(s)
- Marta Avramova
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Paul Grbin
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Warren Albertin
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- ENSCBP, Bordeaux INP, 33600 Pessac, France
| | - Isabelle Masneuf-Pomarède
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| |
Collapse
|
12
|
Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci Rep 2018. [PMID: 29515178 PMCID: PMC5841430 DOI: 10.1038/s41598-018-22580-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO2). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.
Collapse
|