1
|
Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5-Fluorodeoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis. SEPARATIONS 2022. [DOI: 10.3390/separations9110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The drug 5-fluorouracil (5-FU) is a common cancer chemotherapeutic, presenting toxicity. Mild toxicity is treated with administration of probiotics. The interaction of these probiotics with the drug may have a crucial effect on its therapeutic efficacy. In the present work, a method for the quantification of uracil, 5-FU, and its active metabolite 5-fluorodeoxyuridin monophosphate in cells and culture medium of the probiotic L. lactis is presented. Extraction using H2O containing 0.05% v/v formic acid (1:5 v/v) was followed by ammonium sulphate protein precipitation and SPE. Analysis was conducted in a Nucleosil column using a gradient of water, formic acid, and acetonitrile. Calibration curves were constructed for 5-FU (5–100 μg/mL), uracil (5–20 μg/mL), and 5-fluorodeoxyuridin monophosphate (5–20 μg/mL) using 5-bromouracil as the internal standard (R2 ≥ 0.999). The photodegradation of 5-FU amounted to 36.2% at 96 h. An administration experiment in the dark revealed a decline in 5-FU concentration in the culture media (88.3%) and uptake by the cells, while the uracil and FdUMP levels increased in the cells. The inactive metabolite 5,6 dihydrofluorouracil was detected in the medium. Our results demonstrate that uptake and metabolism of 5-FU in L. lactis cells leads to a decline in the drug levels and in the formation of both the active and the inactive metabolites of the drug.
Collapse
|
2
|
Predicting Dihydropyrimidine Dehydrogenase Deficiency and Related 5-Fluorouracil Toxicity: Opportunities and Challenges of DPYD Exon Sequencing and the Role of Phenotyping Assays. Int J Mol Sci 2022; 23:ijms232213923. [PMID: 36430399 PMCID: PMC9694733 DOI: 10.3390/ijms232213923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.
Collapse
|
3
|
Hishinuma E, Narita Y, Obuchi K, Ueda A, Saito S, Tadaka S, Kinoshita K, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Importance of Rare DPYD Genetic Polymorphisms for 5-Fluorouracil Therapy in the Japanese Population. Front Pharmacol 2022; 13:930470. [PMID: 35784703 PMCID: PMC9242541 DOI: 10.3389/fphar.2022.930470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 02/02/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is the rate-limiting enzyme in 5-fluorouracil (5-FU) degradation. In Caucasians, four DPYD risk variants are recognized to be responsible for interindividual variations in the development of 5-FU toxicity. However, these risk variants have not been identified in Asian populations. Recently, 41 DPYD allelic variants, including 15 novel single nucleotide variants, were identified in 3,554 Japanese individuals by analyzing their whole-genome sequences; however, the effects of these variants on DPD enzymatic activity remain unknown. In the present study, an in vitro analysis was performed on 41 DPD allelic variants and three DPD risk variants to elucidate the changes in enzymatic activity. Wild-type and 44 DPD-variant proteins were heterologously expressed in 293FT cells. DPD expression levels and dimerization of DPD were determined by immunoblotting after SDS-PAGE and blue native PAGE, respectively. The enzymatic activity of DPD was evaluated by quantification of dihydro-5-FU, a metabolite of 5-FU, using high-performance liquid chromatography-tandem mass spectrometry. Moreover, we used 3D simulation modeling to analyze the effect of amino acid substitutions on the conformation of DPD. Among the 41 DPD variants, seven exhibited drastically decreased intrinsic clearance (CLint) compared to the wild-type protein. Moreover, R353C and G926V exhibited no enzymatic activity, and the band patterns observed in the immunoblots after blue native PAGE indicated that DPD dimerization is required for its enzymatic activity. Our data suggest that these variants may contribute to the significant inter-individual variability observed in the pharmacokinetics and pharmacodynamics of 5-FU. In our study, nine DPD variants exhibited drastically decreased or no enzymatic activity due to dimerization inhibition or conformational changes in each domain. Especially, the rare DPYD variants, although at very low frequencies, may serve as important pharmacogenomic markers associated with the severe 5-FU toxicity in Japanese population.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoko Narita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kai Obuchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Masamitsu Maekawa
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Noriyasu Hirasawa
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- *Correspondence: Masahiro Hiratsuka,
| |
Collapse
|
4
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
5
|
Udagawa C, Sasaki Y, Tanizawa Y, Suemizu H, Ohnishi Y, Nakamura Y, Tokino T, Zembutsu H. Whole-exome sequencing of 79 xenografts as a potential approach for the identification of genetic variants associated with sensitivity to cytotoxic anticancer drugs. PLoS One 2020; 15:e0239614. [PMID: 32986753 PMCID: PMC7521756 DOI: 10.1371/journal.pone.0239614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy response remains unpredictable in most patients with cancer. In this study, we performed whole-exome sequencing of 79 cancer xenografts derived from human cancer tissues to identify genetic predictors of chemosensitivity to nine cytotoxic anticancer drugs. Xenografts were harvested from 12 organs with cancer and implanted into nude mice. The mice were exposed to one of nine cytotoxic anticancer drugs (5-fluorouracil, nimustine, adriamycin, cyclophosphamide, cisplatin, mitomycin C, methotrexate, vincristine, and vinblastine) to assess the correlation between chemosensitivity response and variant allele frequency. We found 162 candidate variants that were possibly associated with chemosensitivity to one or more of the nine anticancer drugs (P < 0.01). In a subgroup analysis of breast and gastric cancer xenografts, 78 and 67 variants, respectively, were possibly associated with chemosensitivity. This approach may help to contribute to the development of personalized treatments that may allow for the prescription of optimal chemotherapy regimens among patients with cancer.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Sasaki
- Biology, Department of Liberal Arts and Sciences Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yasuyuki Ohnishi
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Pallet N, Hamdane S, Garinet S, Blons H, Zaanan A, Paillaud E, Taieb J, Laprevote O, Loriot MA, Narjoz C. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer 2020; 123:811-818. [PMID: 32595208 PMCID: PMC7462856 DOI: 10.1038/s41416-020-0962-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Pretherapeutic screening for dihydropyrimidine dehydrogenase (DPD) deficiency is recommended or required prior to the administration of fluoropyrimidine-based chemotherapy. However, the best strategy to identify DPD-deficient patients remains elusive. Methods Among a nationwide cohort of 5886 phenotyped patients with cancer who were screened for DPD deficiency over a 3 years period, we assessed the characteristics of both DPD phenotypes and DPYD genotypes in a subgroup of 3680 patients who had completed the two tests. The extent to which defective allelic variants of DPYD predict DPD activity as estimated by the plasma concentrations of uracil [U] and its product dihydrouracil [UH2] was evaluated. Results When [U] was used to monitor DPD activity, 6.8% of the patients were classified as having DPD deficiency ([U] > 16 ng/ml), while the [UH2]:[U] ratio identified 11.5% of the patients as having DPD deficiency (UH2]:[U] < 10). [U] classified two patients (0.05%) with complete DPD deficiency (> 150 ng/ml), and [UH2]:[U] < 1 identified three patients (0.08%) with a complete DPD deficiency. A defective DPYD variant was present in 4.5% of the patients, and two patients (0.05%) carrying 2 defective variants of DPYD were predicted to have low metabolism. The mutation status of DPYD displayed a very low positive predictive value in identifying individuals with DPD deficiency, although a higher predictive value was observed when [UH2]:[U] was used to measure DPD activity. Whole exon sequencing of the DPYD gene in 111 patients with DPD deficiency and a “wild-type” genotype (based on the four most common variants) identified seven heterozygous carriers of a defective allelic variant. Conclusions Frequent genetic DPYD variants have low performances in predicting partial DPD deficiency when evaluated by [U] alone, and [UH2]:[U] might better reflect the impact of genetic variants on DPD activity. A clinical trial comparing toxicity rates after dose adjustment according to the results of genotyping or phenotyping testing to detect DPD deficiency will provide critical information on the best strategy to identify DPD deficiency.
Collapse
Affiliation(s)
- Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France.
| | - Salma Hamdane
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Simon Garinet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Hélène Blons
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Gastrointestinal Oncology, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Elena Paillaud
- Geriatric Oncology Unit, Paris Cancer Institute CARPEM, Hôpital Européen Georges Pompidou, Paris, France.,Université Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Julien Taieb
- Department of Gastroenterology and Gastrointestinal Oncology, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Olivier Laprevote
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, University of Paris, Paris, France
| |
Collapse
|
7
|
Botticelli A, Scagnoli S, Roberto M, Lionetto L, Cerbelli B, Simmaco M, Marchetti P. 5-Fluorouracil degradation rate as a predictive biomarker of toxicity in breast cancer patients treated with capecitabine. J Oncol Pharm Pract 2020; 26:1836-1842. [DOI: 10.1177/1078155220904999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Capecitabine is an oral prodrug of 5-fluorouracil with a relevant role in the treatment of breast cancer. Severe and unexpected toxicities related to capecitabine are not rare, and the identification of biomarkers is challenging. We evaluate the relationship between dihydropyrimidine dehydrogenase, thymidylate synthase enhancer region and methylenetetrahydrofolate reductase polymorphisms, 5-fluorouracil degradation rate and the onset of G3–4 toxicities in breast cancer patients. Genetic polymorphisms and the 5-fluorouracil degradation rate of breast cancer patients treated with capecitabine were retrospectively studied. Genetic markers and the 5-fluorouracil degradation rate were correlated with the reported toxicities. Thirty-seven patients with a median age of 58 years old treated with capecitabine for stages II–IV breast cancer were included in this study. Overall, 34 (91.9%) patients suffered from at least an episode of any grade toxicity while nine patients had G3–4 toxicity. Homozygous methylenetetrahydrofolate reductase 677TT was found to be significantly related to haematological toxicity (OR = 6.5 [95% IC 1.1–37.5], P = 0.04). Three patients had a degradation rate less than 0.86 ng/mL/106 cells/min and three patients greater than 2.1 ng/mL/106 cells/min. At a univariate logistic regression analysis, an altered value of 5-fluorouracil degradation rate (values < 0.86 or >2.10 ng/mL/106 cells/min) increased the risk of G3–4 adverse events (OR = 10.40 [95% IC: 1.48–7.99], P = 0.02). A multivariate logistic regression analysis, adjusted for age, comorbidity and CAPE-regimen, confirmed the role of 5-fluorouracil degradation rate as a predictor of G3–4 toxicity occurrence (OR = 10.9 [95% IC 1.2–96.2], P = 0.03). The pre-treatment evaluation of 5-fluorouracil degradation rate allows to identify breast cancer patients at high risk for severe 5-FU toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Roma, Italy
| | - Paolo Marchetti
- Department of Medical Oncology, St Andrea University Hospital, Rome, Italy
| |
Collapse
|
8
|
Zawiah M, Yousef AM, Kadi T, Yousef M, Majdalawi K, Al-Yacoub S, Al-Hiary R, Tantawi D, Mukred R, Ajaj AR. Early disease relapse in a patient with colorectal cancer who harbors genetic variants of DPYD, TYMS, MTHFR and DHFR after treatment with 5-fluorouracil-based chemotherapy. Drug Metab Pers Ther 2018; 33:201-205. [PMID: 30207288 DOI: 10.1515/dmpt-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Background Early relapse in colorectal cancer (CRC) after curative resection is mainly attributed to the key determinants such as tumor histology, stage, lymphovascular invasion, and the response to chemotherapy. Case presentation Interindividual variability in the efficacy of adjuvant chemotherapy between patients receiving the same treatment may be ascribed to the patients' genetic profile. In this report, we highlight a clinical case of a patient with stage II CRC who relapsed within a short period after starting adjuvant chemotherapy and was later found to have multiple genetic polymorphisms in the DPYD, TYMS, MTHFR, and DHFR genes. Conclusions Based on the clinical data of the patient and the key role of these genes in 5-fluorouracil pathway, we hypothesize that these variants may contribute to the drug response and early relapse in CRC.
Collapse
Affiliation(s)
- Mohammed Zawiah
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Al-Motassem Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Taha Kadi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammed Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Khalil Majdalawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Shorouq Al-Yacoub
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rasha Al-Hiary
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Dua'a Tantawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ramzi Mukred
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
9
|
Udagawa C, Sasaki Y, Suemizu H, Ohnishi Y, Ohnishi H, Tokino T, Zembutsu H. Targeted sequencing reveals genetic variants associated with sensitivity of 79 human cancer xenografts to anticancer drugs. Exp Ther Med 2017; 15:1339-1359. [PMID: 29434720 PMCID: PMC5774388 DOI: 10.3892/etm.2017.5533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Although there has been progress moving from a 'one-size-fits-all' cytotoxic approach to personalized molecular medicine, the majority of patients with cancer receive chemotherapy using cytotoxic anticancer drugs. The sequencing analysis of 409 genes associated with cancer was conducted in the present study using 59 DNA sequences extracted from human cancer xenografts implanted into nude mice, of which sensitivity to 9 cytotoxic anticancer drugs [5-fluorouracil, nimustine, adriamycin, cyclophosphamide, cisplatin, mitomycin C (MMC), methotrexate, vincristine (VCR), and vinblastine] was examined. The present study investigated the association between the sensitivities of the xenografts to the 9 anticancer drugs and the frequency of single nucleotide variants (SNV). The correlation between the expression level of the genes and sensitivities to the 9 drugs in the above xenografts was also estimated. In the screening study using 59 xenografts, 3 SNVs (rs1805321, rs62456182 in PMS1 Homolog 2, Mismatch Repair System Component and rs13382825 in LDL Receptor Related Protein 1B), were associated with sensitivity to VCR and MMC, respectively (P<0.001). A replication study of 596 SNVs was subsequently performed, which indicated P<0.05 in the screening study using independent samples of 20 xenografts. A combined result of the screening and replication studies indicated that 35 SNVs were potentially associated with sensitivities to one or more of the nine anticancer drugs (Pcombined=0.0011-0.035). Of the 35 SNVs, rs16903989 and rs201432181 in Leukemia Inhibitory Factor Receptor α and Adhesion G Protein-Coupled Receptor A2 were commonly associated with sensitivity to 2 or 4 anticancer drugs, respectively. These findings provide novel insights which may benefit the development of personalized anticancer therapy for patients with cancer in the future.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Liquid Biopsy Development Group, Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.,Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yasushi Sasaki
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Hokkaido 060-8556, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Yasuyuki Ohnishi
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Hiroshi Ohnishi
- Liquid Biopsy Development Group, Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Hokkaido 060-8556, Japan
| | - Hitoshi Zembutsu
- Liquid Biopsy Development Group, Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.,Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
10
|
|