1
|
Salvato I, Klein E, Poli A, Rezaeipour M, Ermini L, Nosirov B, Lipsa A, Oudin A, Baus V, Dore GM, Cosma A, Golebiewska A, Marchini A, Niclou SP. Adenoviral delivery of the CIITA transgene induces T-cell-mediated killing in glioblastoma organoids. Mol Oncol 2025; 19:682-697. [PMID: 39535369 PMCID: PMC11887676 DOI: 10.1002/1878-0261.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The immunosuppressive nature of the tumor microenvironment poses a significant challenge to effective immunotherapies against glioblastoma (GB). Boosting the immune response is critical for successful therapy. Here, we adopted a cancer gene therapy approach to induce T-cell-mediated killing of the tumor through increased activation of the immune system. Patient-based three-dimensional (3D) GB models were infected with a replication-deficient adenovirus (AdV) armed with the class II major histocompatibility complex (MHC-II) transactivator (CIITA) gene (Ad-CIITA). Successful induction of surface MHC-II was achieved in infected GB cell lines and primary human GB organoids. Infection with an AdV carrying a mutant form of CIITA with a single amino acid substitution resulted in cytoplasmic accumulation of CIITA without subsequent MHC-II expression. Co-culture of infected tumor cells with either peripheral blood mononuclear cells (PBMCs) or isolated T-cells led to dramatic breakdown of GB organoids. Intriguingly, both wild-type and mutant Ad-CIITA, but not unarmed AdV, triggered immune-mediated tumor cell death in the co-culture system, suggesting an at least partially MHC-II-independent process. We further show that the observed cancer cell killing requires the presence of either CD8+ or CD4+ T-cells and direct contact between GB and immune cells. We did not, however, detect evidence of activation of canonical T-cell-mediated cell death pathways. Although the precise mechanism remains to be determined, these findings highlight the potential of AdV-mediated CIITA delivery to enhance T-cell-mediated immunity against GB.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Laboratory of Oncolytic Virus Immuno‐Therapeutics (LOVIT), Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Eliane Klein
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Aurélie Poli
- Neuro‐Immunology Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Mahsa Rezaeipour
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Luca Ermini
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Multiomics Data Science Research Group, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Anuja Lipsa
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Anaïs Oudin
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Virginie Baus
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Gian Mario Dore
- Laboratory of Oncolytic Virus Immuno‐Therapeutics (LOVIT), Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Antonio Cosma
- National Cytometry Platform, Translational Medicine Operation HubLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Anna Golebiewska
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno‐Therapeutics (LOVIT), Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Laboratory of Oncolytic Virus Immuno‐TherapeuticsGerman Cancer Research CenterHeidelbergGermany
- Present address:
European Commission, Joint Research Centre (JRC)GeelBelgium
| | - Simone P. Niclou
- NORLUX Neuro‐Oncology Laboratory, Department of Cancer ResearchLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
2
|
Alexander KC, Anderson CW, Agala CB, Tasoudis P, Collins EN, Ding Y, Blackwell JW, Willcox DE, Farivar BS, Kibbe MR, Ikonomidis JS, Akerman AW. Paradoxical Changes: EMMPRIN Tissue and Plasma Levels in Marfan Syndrome-Related Thoracic Aortic Aneurysms. J Clin Med 2024; 13:1548. [PMID: 38541774 PMCID: PMC10970932 DOI: 10.3390/jcm13061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. This has been demonstrated to be dependent upon the Membrane Type-1 MMP (MT1-MMP). We investigated this relationship in MFS TAA tissue and plasma to discern why unique profiles may exist. Methods: Protein targets were measured in aortic tissue and plasma from MFS patients with TAAs and were compared to healthy controls. The abundance and location of MT1-MMP was modified in aortic fibroblasts and secreted EMMPRIN was measured in conditioned culture media. Results: EMMPRIN levels were elevated in MFS TAA tissue but reduced in plasma, compared to the controls. Tissue EMMPRIN elevation did not induce MMP-3, MMP-8, or TIMP-1 expression, while MT1-MMP and TIMP-2 were elevated. MMP-2 and MMP-9 were reduced in TAA tissue but increased in plasma. In aortic fibroblasts, EMMPRIN secretion required the internalization of MT1-MMP. Conclusions: In MFS, impaired EMMPRIN secretion likely contributes to higher tissue levels, influenced by MT1-MMP cellular localization. Low EMMPRIN levels, in conjunction with other MMP analytes, distinguished MFS TAAs from controls, suggesting diagnostic potential.
Collapse
Affiliation(s)
- Kyle C. Alexander
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Carlton W. Anderson
- Advanced Analytics Core, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Chris B. Agala
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Panagiotis Tasoudis
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Elizabeth N. Collins
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Yiwen Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - John W. Blackwell
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Danielle E. Willcox
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Behzad S. Farivar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA (M.R.K.)
| | - Melina R. Kibbe
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA (M.R.K.)
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - John S. Ikonomidis
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Adam W. Akerman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| |
Collapse
|
3
|
Siska PJ, Decking SM, Babl N, Matos C, Bruss C, Singer K, Klitzke J, Schön M, Simeth J, Köstler J, Siegmund H, Ugele I, Paulus M, Dietl A, Kolodova K, Steines L, Freitag K, Peuker A, Schönhammer G, Raithel J, Graf B, Geismann F, Lubnow M, Mack M, Hau P, Bohr C, Burkhardt R, Gessner A, Salzberger B, Wagner R, Hanses F, Hitzenbichler F, Heudobler D, Lüke F, Pukrop T, Herr W, Wolff D, Spang R, Poeck H, Hoffmann P, Jantsch J, Brochhausen C, Lunz D, Rehli M, Kreutz M, Renner K. Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. J Clin Invest 2021; 131:148225. [PMID: 34779418 DOI: 10.1172/jci148225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.
Collapse
Affiliation(s)
- Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Jana Klitzke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marian Schön
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jakob Simeth
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Josef Köstler
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Heiko Siegmund
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | | | - Kristina Kolodova
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | - Katharina Freitag
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology
| | - Christopher Bohr
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hanses
- Department of Infection Prevention and Infectious Diseases, and.,Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | | | - Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | | | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Rurali E, Perrucci GL, Gaetano R, Pini A, Moschetta D, Gentilini D, Nigro P, Pompilio G. Soluble EMMPRIN levels discriminate aortic ectasia in Marfan syndrome patients. Am J Cancer Res 2019; 9:2224-2234. [PMID: 31149040 PMCID: PMC6531292 DOI: 10.7150/thno.30714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022] Open
Abstract
Marfan syndrome (MFS) is a rare genetic disease characterized by a matrix metalloproteases (MMPs) dysregulation that leads to extracellular matrix degradation. Consequently, MFS patients are prone to develop progressive thoracic aortic enlargement and detrimental aneurysm. Since MMPs are activated by the extracellular MMP inducer (EMMPRIN) protein, we determined whether its plasmatic soluble form (sEMMPRIN) may be considered a marker of thoracic aortic ectasia (AE). Methods: We compared plasma sEMMPRIN levels of 42 adult Caucasian MFS patients not previously subjected to aortic surgery with those of matched healthy controls (HC) by ELISA. In the MFS cohort we prospectively evaluated the relationship between plasma sEMMPRIN levels and the main MFS-related manifestations. Results: MFS patients had lower plasma sEMMPRIN levels (mean±SD: 2071±637 pg/ml) than HC (2441±642 pg/ml, p=0.009). Amongst all considered MFS-related clinical features, we found that only aortic root dilatation associated with circulating sEMMPRIN levels. Specifically, plasma sEMMPRIN levels negatively correlated with aortic Z-score (r=-0.431, p=0.004), and were significantly lower in patients with AE (Z-score≥2, 1788±510 pg/ml) compared to those without AE (Z-score<2, 2355±634 pg/ml; p=0.003). ROC curve analysis revealed that plasma sEMMPRIN levels discriminated patients with AE (AUC [95%CI]: 0.763 [0.610-0.916], p=0.003) with 85.7% sensitivity, 76.2% specificity, and 81% accuracy. We defined plasma sEMMPRIN levels ≤2246 pg/ml as the best threshold discriminating the presence of AE in MFS patients with an odds ratio [95%CI] of 19.2 [3.947-93.389] (p<0.001). Conclusions: MFS patients are characterized by lower sEMMPRIN levels than HC. Notably, plasma sEMMPRIN levels are strongly associated with thoracic AE.
Collapse
|