1
|
Smith KD, Akilesh S. Collapsing glomerulopathy: unraveling varied pathogeneses. Curr Opin Nephrol Hypertens 2023; 32:213-222. [PMID: 36811644 DOI: 10.1097/mnh.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Collapsing glomerulopathy presents clinically with nephrotic syndrome and rapid progressive loss of kidney function. Animal models and patient studies have uncovered numerous clinical and genetic conditions associated with collapsing glomerulopathy, as well as putative mechanisms, which will be reviewed here. RECENT FINDINGS Collapsing glomerulopathy is classified pathologically as a variant of focal and segmental glomerulosclerosis (FSGS). As such, most research efforts have focused on the causative role of podocyte injury in driving the disease. However, studies have also shown that injury to the glomerular endothelium or interruption of the podocyte-glomerular endothelial cell signaling axis can also cause collapsing glomerulopathy. Furthermore, emerging technologies are now enabling exploration of diverse molecular pathways that can precipitate collapsing glomerulopathy using biopsies from patients with the disease. SUMMARY Since its original description in the 1980s, collapsing glomerulopathy has been the subject of intense study, and these efforts have uncovered numerous insights into potential disease mechanisms. Newer technologies will enable profiling of the intra-patient and inter-patient variability in collapsing glomerulopathy mechanisms directly in patient biopsies, which will improve the diagnosis and classification of collapsing glomerulopathy.
Collapse
Affiliation(s)
- Kelly D Smith
- Department of Laboratory Medicine and Pathology, University of Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington
- Kidney Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Steers NJ, Gupta Y, D’Agati VD, Lim TY, DeMaria N, Mo A, Liang J, Stevens KO, Ahram DF, Lam WY, Gagea M, Nagarajan L, Sanna-Cherchi S, Gharavi AG. GWAS in Mice Maps Susceptibility to HIV-Associated Nephropathy to the Ssbp2 Locus. J Am Soc Nephrol 2022; 33:108-120. [PMID: 34893534 PMCID: PMC8763192 DOI: 10.1681/asn.2021040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To gain insight into the pathogenesis of collapsing glomerulopathy, a rare form of FSGS that often arises in the setting of viral infections, we performed a genome-wide association study (GWAS) among inbred mouse strains using a murine model of HIV-1 associated nephropathy (HIVAN). METHODS We first generated F1 hybrids between HIV-1 transgenic mice on the FVB/NJ background and 20 inbred laboratory strains. Analysis of histology, BUN, and urinary NGAL demonstrated marked phenotypic variation among the transgenic F1 hybrids, providing strong evidence for host genetic factors in the predisposition to nephropathy. A GWAS in 365 transgenic F1 hybrids generated from these 20 inbred strains was performed. RESULTS We identified a genome-wide significant locus on chromosome 13-C3 and multiple additional suggestive loci. Crossannotation of the Chr. 13 locus, including single-cell transcriptomic analysis of wildtype and HIV-1 transgenic mouse kidneys, nominated Ssbp2 as the most likely candidate gene. Ssbp2 is highly expressed in podocytes, encodes a transcriptional cofactor that interacts with LDB1 and LMX1B, which are both previously implicated in FSGS. Consistent with these data, older Ssbp2 null mice spontaneously develop glomerulosclerosis, tubular casts, interstitial fibrosis, and inflammation, similar to the HIVAN mouse model. CONCLUSIONS These findings demonstrate the utility of GWAS in mice to uncover host genetic factors for rare kidney traits and suggest Ssbp2 as susceptibility gene for HIVAN, potentially acting via the LDB1-LMX1B transcriptional network.
Collapse
Affiliation(s)
- Nicholas J. Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Natalia DeMaria
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Anna Mo
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Judy Liang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Kelsey O. Stevens
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Wan Yee Lam
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Husain NE, Ahmed MH, Almobarak AO, Noor SK, Elmadhoun WM, Awadalla H, Woodward CL, Mital D. HIV-Associated Nephropathy in Africa: Pathology, Clinical Presentation and Strategy for Prevention. J Clin Med Res 2018; 10:1-8. [PMID: 29238427 PMCID: PMC5722038 DOI: 10.14740/jocmr3235w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can lead to progressive decline in renal function known as HIV-associated nephropathy (HIVAN). Importantly, individuals of African ancestry are more at risk of developing HIVAN than their European descent counterparts. An in-depth search on Google Scholar, Medline and PubMed was conducted using the terms "HIVAN" and "pathology and clinical presentation", in addition to "prevalence and risk factors for HIVAN", with special emphasis on African countries for any articles published between 1990 and 2017. HIVAN is characterized by progressive acute renal failure, proteinuria and enlarged kidneys. A renal biopsy is necessary to establish definitive diagnosis. Risk factors are male gender, low CD4 counts, high viral load and long use of combined antiretroviral medication (cART). There is a wide geographical variation in the prevalence of HIVAN as it ranges from 4.7% to 38% worldwide and little published literature is available about its prevalence in African nations. Microalbuminuria is a common finding in African populations and is significantly associated with severity of HIV disease progression and CD4 count less than 350 cells/µL. Other clinical presentations in African populations include acute kidney injury (AKI), nephrotic syndrome and chronic kidney disease. The main HIV-associated renal pathological lesions were focal segmental glomerulosclerosis, mainly the collapsing form, acute interstitial nephritis (AIN), and immune complex-mediated glomerulonephritis (ICGN). HIV infection-induced transcriptional program in renal tubular epithelial cells as well as genetic factors is incriminated in the pathogenesis of HIVAN. This narrative review discusses the prevalence, presentation, pathogenesis and the management of HIVAN in Africa. In low resource setting countries in Africa, dealing with HIV complications like HIVAN may add more of a burden on the health system (particularly renal units) than HIV medication itself. Therefore, the obvious recommendation is early use of cART in order to decrease risk factors that lead to HIVAN.
Collapse
Affiliation(s)
- Nazik Elmalaika Husain
- Department of Pathology, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Khartoum, Sudan
| | - Mohamed H. Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire, UK
| | - Ahmed O. Almobarak
- Department of Pathology, Faculty of Medicine, University of Medical Sciences and Technology, Khartoum, Sudan
| | - Sufian K. Noor
- Department of Medicine, Faculty of Medicine and Health Sciences, Nile Valley University, Atbara, Sudan
| | - Wadie M. Elmadhoun
- Department of Pathology, Faculty of Medicine and Health Sciences, Nile Valley University, Atbara, Sudan
| | - Heitham Awadalla
- Department of Community Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Clare L. Woodward
- Department of HIV and Blood Borne Viruses, Milton Keynes University Hospital, NHS Foundation Trust, Milton Keynes, UK
| | - Dushyant Mital
- Department of HIV and Blood Borne Viruses, Milton Keynes University Hospital, NHS Foundation Trust, Milton Keynes, UK
| |
Collapse
|