1
|
Yuan X, Qin Y, Tian Q, Liu C, Meng X, Qie B, Gao F, Huang Y, Xu G, Yang G, Zhu Y. Smart delivery of poly-peptide composite for effective cancer therapy. Biomed Mater 2022; 17:024103. [PMID: 34996052 DOI: 10.1088/1748-605x/ac494c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
In the past decade, multifunctional peptides have attracted increasing attention in the biomedical field. Peptides possess many impressive advantages, such as high penetration ability, low cost, and etc. However, the short half-life and instability of peptides limit their application. In this study, a poly-peptide drug loading system (called HKMA composite) was designed based on the different functionalities of four peptides. The peptide compositions of HKMA composite from N-terminal to C-terminal were HCBP1, KLA, matrix metalloproteinase-2 (MMP-2)-cleavable peptide and albumin-binding domain. The targeting and lethality of HKMA to NSCLC cell line H460 sphere cells and the half-life of the system were measuredin vivo. The results showed that the HKMA composite had a long half-life and specific killing effect on H460 sphere cellsin vitroandin vivo. Our result proposed smart peptide drug loading system and provided a potential methodology for effective cancer treatment.
Collapse
Affiliation(s)
- Xin Yuan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yingzhou Qin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Qingmei Tian
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Cuijuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiangzhou Meng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Bo Qie
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fan Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Ying Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Guanghui Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Guang Yang
- Department of Oncology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou 215000, People's Republic of China
| | - Yimin Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
2
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Kabir A, Nazeer N, Bissessur R, Ahmed M. Diatoms embedded, self-assembled carriers for dual delivery of chemotherapeutics in cancer cell lines. Int J Pharm 2019; 573:118887. [PMID: 31765771 DOI: 10.1016/j.ijpharm.2019.118887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023]
Abstract
The concept of dual drug delivery to treat relapsing tumors is a well-studied approach to improve the antitumor efficacies and to reduce the side effects of single drug chemotherapeutic treatments. One of the major issues with dual drug delivery to treat drug resistant tumors is the concentration and ratio dependent antagonistic behavior of two drugs, which may reverse the anticancer efficacies of individual chemotherapeutics and stimulate the growth of tumor cells. In this paper, we address this issue by developing diatomaceous earth embedded core shell materials, which are capable of encapsulating two chemotherapeutic drugs at constant molar ratios, in different compartments of a single drug delivery carrier. The encapsulation of each drug in different compartments of delivery carrier (core of diatoms versus shell of cyclodextrin) then controls the release rate of both drugs in situ, and maintains the optimal molar ratios required for their synergistic outcomes in vitro.
Collapse
Affiliation(s)
- Anayet Kabir
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Nauman Nazeer
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada; Faculty of Sustainable Design & Engineering, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada.
| |
Collapse
|
4
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
5
|
A comparative study of effect of autograft compared with allograft anterior cruciate ligament reconstruction on expressions of LOXs and MMPs. Biosci Rep 2017; 37:BSR20160533. [PMID: 28275205 PMCID: PMC5408659 DOI: 10.1042/bsr20160533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to compare the effect of autograft or allograft anterior cruciate ligament (ACL) reconstruction on the expressions of lipoxygenases (LOXs) and matrix metalloproteinases (MMPs) in a New Zealand white rabbit model. New Zealand white rabbits were divided randomly into control, sham, autograft and allograft groups. At the 4th and 8th week after operation, biomechanical testing was performed to measure the primary length, cross-sectional area, maximum tensile load and stiffness of ACL, and HE staining was used to observe cell morphology and fibre alignment of ACL. At the 2nd, 4th and 8th week after operation, quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry were applied to detect LOXs and MMPs expressions, and expressions of adenomatous polyposis coli (APC)/Wnt signalling pathway-related proteins. At the 4th and 8th week after operation, the maximum tensile load and stiffness were higher in the autograft group than in the allograft group, and the values at the 8th week were higher than those at the 4th week after operation. The fibroblast proliferation in the allograft group was more significant than that in the autograft group. Compared with the control group, LOXs and MMPs expressions and the positive expression rates of LOXs and MMPs proteins were elevated, and the values in the allograft group were higher than those in the autograft group at all time points. At 8th week after operation, compared with the autograft group, Wnt expression was higher and APC expression was lower in the allograft group. Autograft and allograft ACL reconstruction can promote LOXs and MMPs expressions by activating the APC/Wnt signalling pathway.
Collapse
|