1
|
Lewitus VJ, Kim J, Blackwell KT. Sex and estradiol effects in the rodent dorsal striatum. Eur J Neurosci 2024; 60:6962-6986. [PMID: 39573926 DOI: 10.1111/ejn.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
17β-Estradiol (E2) is a sex hormone that acts on many brain regions to produce changes in neuronal activity and learning. A key brain region sensitive to E2 is the dorsal striatum (also called caudate-putamen), which controls motor behaviour, goal-directed learning and habit learning. In adult rodents, oestrogen receptors (ERs) in the dorsal striatum are localized to the plasma membrane and include ERα, ERβ and G protein-coupled ER (GPER). E2, either naturally produced or exogenously applied, may influence neuronal excitability, basal synaptic transmission and long-term synaptic potentiation. These effects may be due to direct action on signalling pathways or may be due to changes in dopamine availability. In particular, estradiol influences dopamine release, dopamine receptor expression and dopamine transporter expression. We review the cellular effects that E2 has in the dorsal striatum, distinguishing between exogenously applied E2 and the oestrous cycle, as well as its influence on dorsal striatal-dependent motor and learning behaviour.
Collapse
|
2
|
Statz M, Schleuter F, Weber H, Kober M, Plocksties F, Timmermann D, Storch A, Fauser M. Subthalamic nucleus deep brain stimulation does not alter growth factor expression in a rat model of stable dopaminergic deficiency. Neurosci Lett 2023; 814:137459. [PMID: 37625613 DOI: 10.1016/j.neulet.2023.137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been a highly effective treatment option for mid-to-late-stage Parkinson's disease (PD) for decades. Besides direct effects on brain networks, neuroprotective effects of STN-DBS - potentially via alterations of growth factor expression levels - have been proposed as additional mechanisms of action. OBJECTIVE In the context of clarifying DBS mechanisms, we analyzed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels in the basal ganglia, motor and parietal cortices, and dentate gyrus in an animal model of stable, severe dopaminergic deficiency. METHODS We applied one week of continuous unilateral STN-DBS in a group of stable 6-hydroxydopamine (6-OHDA) hemiparkinsonian rats (6-OHDASTIM) in comparison to a 6-OHDA control group (6-OHDASHAM) as well as healthy controls (CTRLSTIM and CTRLSHAM). BDNF and GDNF levels were determined via ELISAs. RESULTS The 6-OHDA lesion did not result in a persistent alteration in either BDNF or GDNF levels in a model of severe dopaminergic deficiency after completion of the dopaminergic degeneration. STN-DBS modestly increased BDNF levels in the entopeduncular nucleus, but even impaired BDNF and GDNF expression in cortical areas. CONCLUSIONS STN-DBS does not increase growth factor expression when applied to a model of completed, severe dopaminergic deficiency in contrast to other studies in models of modest and ongoing dopaminergic degeneration. In healthy controls, STN-DBS does not influence BDNF or GDNF expression. We consider these findings relevant for clinical purposes since DBS in PD is usually applied late in the course of the disease.
Collapse
Affiliation(s)
- Meike Statz
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Frederike Schleuter
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| |
Collapse
|
3
|
Ramli NZ, Yahaya MF, Mohd Fahami NA, Abdul Manan H, Singh M, Damanhuri HA. Brain volumetric changes in menopausal women and its association with cognitive function: a structured review. Front Aging Neurosci 2023; 15:1158001. [PMID: 37818479 PMCID: PMC10561270 DOI: 10.3389/fnagi.2023.1158001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
The menopausal transition has been proposed to put women at risk for undesirable neurological symptoms, including cognitive decline. Previous studies suggest that alterations in the hormonal milieu modulate brain structures associated with cognitive function. This structured review provides an overview of the relevant studies that have utilized MRI to report volumetric differences in the brain following menopause, and its correlations with the evaluated cognitive functions. We performed an electronic literature search using Medline (Ovid) and Scopus to identify studies that assessed the influence of menopause on brain structure with MRI. Fourteen studies met the inclusion criteria. Brain volumetric differences have been reported most frequently in the frontal and temporal cortices as well as the hippocampus. These regions are important for higher cognitive tasks and memory. Additionally, the deficit in verbal and visuospatial memory in postmenopausal women has been associated with smaller regional brain volumes. Nevertheless, the limited number of eligible studies and cross-sectional study designs warrant further research to draw more robust conclusions.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Kövesdi E, Udvarácz I, Kecskés A, Szőcs S, Farkas S, Faludi P, Jánosi TZ, Ábrahám IM, Kovács G. 17β-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne) 2023; 13:993552. [PMID: 36686456 PMCID: PMC9848397 DOI: 10.3389/fendo.2022.993552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The striatum is an essential component of the basal ganglia that is involved in motor control, action selection and motor learning. The pathophysiological changes of the striatum are present in several neurological and psychiatric disorder including Parkinson's and Huntington's diseases. The striatal cholinergic neurons are the main regulators of striatal microcircuitry. It has been demonstrated that estrogen exerts various effects on neuronal functions in dopaminergic and medium spiny neurons (MSN), however little is known about how the activity of cholinergic interneurons are influenced by estrogens. In this study we examined the acute effect of 17β-estradiol on the function of striatal cholinergic neurons in adult mice in vitro. We also tested the effect of estrus cycle and sex on the spontaneous activity of cholinergic interneurons in the striatum. Our RNAscope experiments showed that ERα, ERβ, and GPER1 receptor mRNAs are expressed in some striatal cholinergic neurons at a very low level. In cell-attached patch clamp experiments, we found that a high dose of 17β-estradiol (100 nM) affected the spontaneous firing rate of these neurons only in old males. Our findings did not demonstrate any acute effect of a low concentration of 17β-estradiol (100 pM) or show any association of estrus cycle or sex with the activity of striatal cholinergic neurons. Although estrogen did not induce changes in the intrinsic properties of neurons, indirect effects via modulation of the synaptic inputs of striatal cholinergic interneurons cannot be excluded.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Ildikó Udvarácz
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Angéla Kecskés
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Szőcs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Péter Faludi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Tibor Z. Jánosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - István M. Ábrahám
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Gergely Kovács
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| |
Collapse
|
5
|
Enterría-Morales D, López-López I, López-Barneo J, d'Anglemont de Tassigny X. Role of Glial Cell Line-Derived Neurotrophic Factor in the Maintenance of Adult Mesencephalic Catecholaminergic Neurons. Mov Disord 2020; 35:565-576. [PMID: 31930748 DOI: 10.1002/mds.27986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glial cell line-derived neurotrophic factor has a potent neuroprotective action on mesencephalic dopamine neurons, which are progressively lost in Parkinson's disease. Intrastriatal administration of this factor is a promising therapy for Parkinson's disease. Glial cell line-derived neurotrophic factor is naturally produced in restricted cerebral regions, such as the striatum, septum, and thalamus; however, its effects in the adult brain remain under debate. OBJECTIVES We sought to clarify the physiologic role of endogenous glial cell line-derived neurotrophic factor in the survival of catecholaminergic neurons of the substantia nigra pars compacta and the locus coeruleus in adult mice. METHODS We used 2 new Cre recombinase-based mouse models to delete a floxed-glial cell line-derived neurotrophic factor gene. The first model had Cre expression in the parvalbumin expressing interneurons, as these cells represent the major source of striatal glial cell line-derived neurotrophic factor. The second model was an estrogen receptor 2-based inducible Cre triggered by tamoxifen at 2 months of age. RESULTS We found that the floxed-glial cell line-derived neurotrophic factor gene was resilient to ablation by Cre-induced recombination and that parvalbumin-driven Cre was particularly inefficient to do so. The inducible-Cre model allowed an average 70% to 80% reduction in glial cell line-derived neurotrophic factor messenger ribonucleic acid and protein in striatum and septum with moderate significant loss of catecholamine neurons in the nigrostriatal pathway and, more markedly, in the locus coeruleus. This was accompanied with mild locomotor decline. CONCLUSIONS Our data support qualitatively the view that brain glial cell line-derived neurotrophic factor is needed for the maintenance of adult central catecholaminergic neurons. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel Enterría-Morales
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital,/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Seville, Spain
| | - Ivette López-López
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital,/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Seville, Spain
| | - José López-Barneo
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital,/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Seville, Spain
| | - Xavier d'Anglemont de Tassigny
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital,/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Seville, Spain
| |
Collapse
|