1
|
Kaplan‐Arabaci O, Dančišinová Z, Paulsen RE. The Chicken Embryo: An Alternative Animal Model in Development, Disease and Pharmacological Treatment. Pharmacol Res Perspect 2025; 13:e70086. [PMID: 40113588 PMCID: PMC11925699 DOI: 10.1002/prp2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/14/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
To examine various medications and substances, in vivo models such as rats and mice are routinely used. However, it is utterly desirable to reduce extensive amounts of animals for these experimental models, which are costly and time-consuming. Animals are frequently put through a variety of procedures that could cause them pain, distress, or even harm; therefore, it is important to think about the ethical ramifications of using them in research. Thus, by following the three R's of animal research: reduction, replacement, and refinement, living animals used in studies should be minimized. The embryo of Gallus gallus, the domestic chicken, is a great model to research many different diseases and conditions. Its efficient blood supply from the chorioallantoic membrane gives us a unique possibility to administer chemicals or cells to the embryo in a noninvasive manner. In this review, we evaluate some advantages and disadvantages of using the developing chicken as an alternative in vivo model for development, disease, and pharmacological treatment. We focus on the top two leading causes of death: neurological disorders and cancer. We present a number of studies that describe the use of the chicken embryo in neuroscience and neurodevelopment research, in cancer research, and pharmacodynamic and pharmacokinetic studies. These studies show that the chicken embryo is an inexpensive, readily available, self-sufficient model with a short incubation period, high accessibility, and ideal for drug screening, making it an appealing model that can provide insightful biological and pharmacological information.
Collapse
Affiliation(s)
- Oykum Kaplan‐Arabaci
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| | - Zuzana Dančišinová
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
- Institute of NeurobiologyBiomedical Research Center, Slovak Academy of SciencesKošiceSlovakia
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| |
Collapse
|
2
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
3
|
Medhat D, El-Bana MA, El-Tantawy El-Sayed I, Ahmed AAS, El-Naggar ME, Hussein J. Investigating the Anti-inflammatory Effect of Quinoline Derivative: N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine Hydrochloride Loaded Soluble Starch Nanoparticles Against Methotrexate-induced Inflammation in Experimental Model. Biol Proced Online 2024; 26:16. [PMID: 38831428 PMCID: PMC11149278 DOI: 10.1186/s12575-024-00240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND It is necessary to develop advanced therapies utilizing natural ingredients with anti-inflammatory qualities in order to lessen the negative effects of chemotherapeutics. RESULTS The bioactive N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine hydrochloride (NIQBD) was synthesized. After that, soluble starch nanoparticles (StNPs) was used as a carrier for the synthesized NIQBD with different concentrations (50 mg, 100 mg, and 200 mg). The obtained StNPs loaded with different concentrations of NIQBD were coded as StNPs-1, StNPs-2, and StNPs-3. It was observed that, StNPs-1, StNPs-2, and StNPs-3 exhibited an average size of 246, 300, and 328 nm, respectively. Additionally, they also formed with homogeneity particles as depicted from polydispersity index values (PDI). The PDI values of StNPs-1, StNPs-2, and StNPs-3 are 0.298, 0.177, and 0.262, respectively. In vivo investigation of the potential properties of the different concentrations of StNPs loaded with NIQBD against MTX-induced inflammation in the lung and liver showed a statistically substantial increase in levels of reduced glutathione (GSH) accompanied by a significant decrease in levels of oxidants such as malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein product (AOPP), matrix metalloproteinase 9/Gelatinase B (MMP-9), and levels of inflammatory mediators including interleukin 1-beta (IL-1β), nuclear factor kappa-B (NF-κB) in both lung and liver tissues, and a significant decrease in levels of plasma homocysteine (Hcy) compared to the MTX-induced inflammation group. The highly significant results were obtained by treatment with a concentration of 200 mg/mL. Histopathological examination supported these results, where treatment showed minimal inflammatory infiltration and congestion in lung tissue, a mildly congested central vein, and mild activation of Kupffer cells in liver tissues. CONCLUSION Combining the treatment of MTX with natural antioxidant supplements may help reducing the associated oxidation and inflammation.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt.
| | - Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | | | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, 32511, Shebin El Koom, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Obregón-Mendoza MA, Meza-Morales W, Rodríguez-Hernández KD, Estévez-Carmona MM, Pérez-González LL, Tavera-Hernández R, Ramírez-Apan MT, Barrera-Hernández D, García-Olivares M, Monroy-Torres B, Nieto-Camacho A, Chávez MI, Sánchez-Obregón R, Enríquez RG. The Antitumoral Effect In Ovo of a New Inclusion Complex from Dimethoxycurcumin with Magnesium and Beta-Cyclodextrin. Int J Mol Sci 2024; 25:4380. [PMID: 38673967 PMCID: PMC11050057 DOI: 10.3390/ijms25084380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.
Collapse
Affiliation(s)
- Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - William Meza-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - Karla Daniela Rodríguez-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - M. Mirian Estévez-Carmona
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, M. Wilfrido Massieu SN, U. A. Zacatenco, Mexico City 07738, Mexico;
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - David Barrera-Hernández
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (D.B.-H.); (M.G.-O.)
| | - Mitzi García-Olivares
- Departamento de Biología de la Reproducción “Dr. Carlos Gual Castro”, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (D.B.-H.); (M.G.-O.)
| | - Brian Monroy-Torres
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - María Isabel Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.A.O.-M.); (W.M.-M.); (K.D.R.-H.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (B.M.-T.); (A.N.-C.); (M.I.C.); (R.S.-O.)
| |
Collapse
|
5
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar M, Mittal V, Kaushik D. Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:278-294. [PMID: 37904561 DOI: 10.2174/1872210517666230823155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
6
|
Wierzbicki M, Zawadzka K, Wójcik B, Jaworski S, Strojny B, Ostrowska A, Małolepszy A, Mazurkiewicz-Pawlicka M, Sawosz E. Differences in the Cell Type-Specific Toxicity of Diamond Nanoparticles to Endothelial Cells Depending on the Exposure of the Cells to Nanoparticles. Int J Nanomedicine 2023; 18:2821-2838. [PMID: 37273285 PMCID: PMC10237202 DOI: 10.2147/ijn.s411424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Diamond nanoparticles are considered to be one of the most cytocompatible carbon nanomaterials; however, their toxicity varies significantly depending on the analysed cell types. The aim was to investigate the specific sensitivity of endothelial cells to diamond nanoparticles dependent on exposure to nanoparticles. Methods Diamond nanoparticles were characterized with Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Toxicity of diamond nanoparticles was assessed for endothelial cells (HUVEC), human mammary epithelial cells (HMEC) and HS-5 cell line. The effect of diamond nanoparticles on the level of ROS, NO, NADPH and protein synthesis of angiogenesis-related proteins of endothelial cells was evaluated. Results and Discussion Our studies demonstrated severe cell type-specific toxicity of diamond nanoparticles to endothelial cells (HUVEC) depending on nanoparticle surface interaction with cells. Furthermore, we have assessed the effect on cytotoxicity of the bioconjugation of nanoparticles with a peptide containing the RGD motive and a serum protein corona. Our study suggests that the mechanical interaction of diamond nanoparticles with the endothelial cell membranes and the endocytosis of nanoparticles lead to the depletion of NADPH, resulting in an intensive synthesis of ROS and a decrease in the availability of NO. This leads to severe endothelial toxicity and a change in the protein profile, with changes in major angiogenesis-related proteins, including VEGF, bFGF, ANPT2/TIE-2, and MMP, and the production of stress-related proteins, such as IL-6 and IL-8. Conclusion We confirmed the presence of a relationship between the toxicity of diamond nanoparticles and the level of cell exposure to nanoparticles and the nanoparticle surface. The results of the study give new insights into the conditioned toxicity of nanomaterials and their use in biomedical applications.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, 00-654, Poland
| | | | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
7
|
Leung HM, Chu HC, Mao ZW, Lo PK. Versatile nanodiamond-based tools for therapeutics and bioimaging. Chem Commun (Camb) 2023; 59:2039-2055. [PMID: 36723092 DOI: 10.1039/d2cc06495b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV-) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The in vitro and in vivo biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Salah N, Dubuquoy L, Carpentier R, Betbeder D. Starch nanoparticles improve curcumin-induced production of anti-inflammatory cytokines in intestinal epithelial cells. Int J Pharm X 2022; 4:100114. [PMID: 35295898 PMCID: PMC8919232 DOI: 10.1016/j.ijpx.2022.100114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 01/13/2023] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a long-term condition resulting from self-sustained intestinal inflammation. Curcumin (Cur), a powerful, naturally occurring antioxidant and anti-inflammatory polyphenol, has been investigated as a therapeutic for IBD, but its poor stability and low bioavailability limits its efficacy. We investigated the use of crosslinked starch nanocarrier (NPL) on the intracellular delivery and the anti-inflammatory efficiency of curcumin. Caco-2 epithelial cells were stimulated with TNFα for 24 h and the anti-inflammatory effects of NPL/Cur formulations were evaluated at the early stages of inflammation (4 h) or later, when fully established (24 h). NPL allowed the intracellular delivery of curcumin, which was enhanced in inflammatory cells, due to a modification of the endocytosis pathways. NPL/Cur decreased the secretion of pro-inflammatory cytokines IL-1β, IL-6 and IL-8 while increasing the anti-inflammatory cytokine IL-10. Finally, the inflammation-related opening of the tight junctions better allowed NPL/Cur to cross the epithelium by paracellular transport. This was confirmed by ex vivo analysis where NPL/Cur, administered to colonic explants from chemically-induced acute colitis mouse model, delivered curcumin deeper in the epithelium. To conclude, NPL/Cur formulation emphasizes the anti-inflammatory effects of curcumin and could constitute a therapeutic alternative in the management of IBD.
Collapse
Affiliation(s)
- Norhane Salah
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Corresponding author.
| | - Didier Betbeder
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| |
Collapse
|
9
|
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. The chick embryo chorioallantoic membrane model: a research approach for ex vivo and in vivo experiments. Curr Med Chem 2021; 29:1702-1717. [PMID: 34176455 DOI: 10.2174/0929867328666210625105438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. OBJECTIVES This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. CONCLUSION The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Evaluation of curcumin-loaded polymeric nanocapsules with different coatings in chick embryo model: influence on angiogenesis, teratogenesis and oxidative stress. Pharmacol Rep 2021; 73:563-573. [PMID: 33471303 DOI: 10.1007/s43440-021-00218-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Curcumin (CUR) is a bioactive compound with several proven pharmacological properties. However, the major limitation for therapeutic use of CUR is its low bioavailability. In this sense, an alternative to this question is the use of polymeric nanocapsules (NC) as drug/nutraceutical delivery systems. Thus, the aim of current study was to assess the effect of CUR-loaded NC and their different coatings in chick embryo model, evaluating angiogenic, teratogenic and oxidative stress parameters. METHODS The physicochemical characterization of unloaded and loaded NC with different coatings: (U-NC (P80), U-NC (PEG), U-NC (EUD), U-NC (CS), CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS)) were performed. After 9 days of incubation, eggs were treated (10 mL/kg eggs; via injection) with NC (unloaded and loaded with CUR) and CUR-solution. In sequence, hen's egg test-chorioallantoic membrane (HET-CAM), angiogenic assay, external abnormalities, weight of embryos and oxidative stress markers (TBARS, NPSH, ROS and CAT) were analyzed. RESULTS CUR-NC (P80, PEG, EUD and CS) treatments caused antiangiogenic and non-teratogenic effects in chick embryo model. Still, CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS) did not alter markers of oxidative stress (TBARS, NPSH, CAT) studied. Only CUR-NC (EUD) caused increase in ROS levels. CONCLUSION Wherefore, these findings of present study represent a advance in research of drug/nutraceutical delivery systems.
Collapse
|
11
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
12
|
Zielińska-Górska M, Hotowy A, Wierzbicki M, Bałaban J, Sosnowska M, Jaworski S, Strojny B, Chwalibog A, Sawosz E. Graphene oxide nanofilm and the addition of L-glutamine can promote development of embryonic muscle cells. J Nanobiotechnology 2020; 18:76. [PMID: 32414365 PMCID: PMC7229609 DOI: 10.1186/s12951-020-00636-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Formation of muscular pseudo-tissue depends on muscle precursor cells, the extracellular matrix (ECM)-mimicking structure and factors stimulating cell differentiation. These three things cooperate and can create a tissue-like structure, however, their interrelationships are relatively unknown. The objective was to study the interaction between surface properties, culture medium composition and heterogeneous cell culture. We would like to demonstrate that changing the surface properties by coating with graphene oxide nanofilm (nGO) can affect cell behaviour and especially their need for the key amino acid l-glutamine (L-Glu). Results Chicken embryo muscle cells and their precursors, cultured in vitro, were used as the experimental model. The mesenchymal stem cell, collected from the hind limb of the chicken embryo at day 8 were divided into 4 groups; the control group and groups treated with nGO, L-Glu and nGO supplied with L-Glu (nGOxL-Glu). The roughness of the surface of the plastic plate covered with nGO was much lower than a standard plate. The test of nGO biocompatibility demonstrated that the cells were willing to settle on the nGO without any toxic effects. Moreover, nGO by increasing hydrophilicity and reducing roughness and presumably through chemical bonds available on the GO surface stimulated the colonisation of primary stromal cells that promote embryonic satellite cells. The viability significantly increased in cells cultured on nGOxL-Glu. Observations of cell morphology showed that the most mature state of myogenesis was characteristic for the group nGOxL-Glu. This result was confirmed by increasing the expression of MYF5 genes at mRNA and protein levels. nGO also increased the expression of MYF5 and also very strongly the expression of PAX7 at mRNA and protein levels. However, when analysing the expression of PAX7, a positive link was observed between the nGO surface and the addition of L-Glu. Conclusions The use of nGO and L-Glu supplement may improve myogenesis and also the myogenic potential of myocytes and their precursors by promoting the formation of satellite cells. Studies have, for the first time, demonstrated positive cooperation between surface properties nGO and L-Glu supplementation to the culture medium regarding the myogenic potential of cells involved in muscle formation.![]()
Collapse
Affiliation(s)
- Marlena Zielińska-Górska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Anna Hotowy
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| |
Collapse
|
13
|
Abstract
The current chapter highlights the use of chorioallantoic membrane (CAM) of fertilized chicken egg for the characterization of nanoparticles applied in cancer nanomedicine. The CAM assay represents a promising alternative to mouse models in term of costs, ease of use, rapidity and ethical issues in particular for the screening of nanoformulations. Hence, the features of nanoparticles including blood retention, biocompatibility, active targeting or tumor accumulation, angiogenic activity, drug delivery and tumor elimination might be simply evaluated via the CAM model. In particular, in this model, embryo organs and morphology, CAM vasculature and blood cells, transplanted tumors on CAM were typically monitored and used for the evaluation of the nanomaterials. With the above advantages, the CAM assay, as highly valuable in vivo model, could be used regularly in pharmaceutical industries.
Collapse
Affiliation(s)
- Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand; Institute for Integrated Cell-Material Sciences-Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Bangeppagari M, Park SH, Kundapur RR, Lee SJ. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-vivo toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:810-820. [PMID: 31005017 DOI: 10.1016/j.scitotenv.2019.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has wide engineering applications in various areas, including electronics, energy storage, pharmaceuticals, nanomedicine, environmental remediation and biotechnology, because of its unique physico-chemical properties. In the present study, the risk-related information of GO was evaluated to examine the potential ecological and health risks of developmental toxicity. Although the overall developmental toxicity of GO has been well characterized in zebrafish, however, its release effect at a certain concentration of living organisms with specific cardiovascular defects remains largely elusive. Therefore, this study was conducted to further evaluate the toxicity of GO on embryonic development and cardiovascular defects in zebrafish embryos used as an in-vivo animal model. As a result, the presence of GO at a small concentration (0.1-0.3 mg/mL) does not affect the embryonic development. However, GO at higher concentrations (0.4-1 mg/mL) induces significant embryonic mortality, increase heartbeat, delayed hatching, cardiotoxicity, cardiovascular defects, retardation of cardiac looping, increased apoptosis and decreased hemoglobinization. These results provide valuable information that can be used to study the eco-toxicological effects of GO for assessing its bio-safety according to environmental concentration. In addition, the present results would also be usefully utilized for understanding the environmental risks associated with GO on human health in general.
Collapse
Affiliation(s)
- Manjunatha Bangeppagari
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | | | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| |
Collapse
|
15
|
Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesr SS, Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3727-3739. [PMID: 30637739 DOI: 10.1002/jsfa.9593] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The technique of delivering various nutrients, supplements, immunostimulants, vaccines, and drugs via the in ovo route is gaining wide attention among researchers worldwide for boosting production performance, immunity and safeguarding the health of poultry. It involves direct administration of the nutrients and biologics into poultry eggs during the incubation period and before the chicks hatch out. In ovo delivery of nutrients has been found to be more effective than post-hatch administration in poultry production. The supplementation of feed additives, nutrients, hormones, probiotics, prebiotics, or their combination via in ovo techniques has shown diverse advantages for poultry products, such as improved growth performance and feed conversion efficiency, optimum development of the gastrointestinal tract, enhancing carcass yield, decreased embryo mortality, and enhanced immunity of poultry. In ovo delivery of vaccination has yielded a better response against various poultry pathogens than vaccination after hatch. So, this review has aimed to provide an insight on in ovo technology and its potential applications in poultry production to deliver different nutrients, supplements, beneficial microbes, vaccines, and drugs directly into the developing embryo to achieve an improvement in post-hatch growth, immunity, and health of poultry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
| |
Collapse
|
16
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Grodzik M, Szczepaniak J, Strojny-Cieslak B, Hotowy A, Wierzbicki M, Jaworski S, Kutwin M, Soltan E, Mandat T, Lewicka A, Chwalibog A. Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells. Molecules 2019; 24:molecules24081549. [PMID: 31010146 PMCID: PMC6515518 DOI: 10.3390/molecules24081549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.
Collapse
Affiliation(s)
- Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jaroslaw Szczepaniak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Barbara Strojny-Cieslak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Hotowy
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Slawomir Jaworski
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Emilia Soltan
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Tomasz Mandat
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Andre Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
18
|
Abstract
SummaryStudies have shown that daily exposure to different products, whether chemical or natural, can cause irreversible damage to women’s reproductive health. Therefore it is necessary to use tests that evaluate the safety and efficacy of these products. Most reproductive toxicology tests are performedin vivo. However, in recent years, various cell culture methods, including embryonic stem cells and tissues have been developed with the aim of reducing the use of animals in toxicological tests. This is a major advance in the area of toxicology, as these systems have the potential to become a widely used tool compared within vivotests routinely used in reproductive biology and toxicology. The present review describes and highlights data onin vitroculture processes used to evaluate reproductive toxicity as an alternative to traditional methods usingin vivotests.
Collapse
|
19
|
Strojny B, Sawosz E, Grodzik M, Jaworski S, Szczepaniak J, Sosnowska M, Wierzbicki M, Kutwin M, Orlińska S, Chwalibog A. Nanostructures of diamond, graphene oxide and graphite inhibit CYP1A2, CYP2D6 and CYP3A4 enzymes and downregulate their genes in liver cells. Int J Nanomedicine 2018; 13:8561-8575. [PMID: 30587978 PMCID: PMC6300366 DOI: 10.2147/ijn.s188997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION AND OBJECTIVE Currently, carbon nanostructures are vastly explored materials with potential for future employment in biomedicine. The possibility of employment of diamond nanoparticles (DN), graphene oxide (GO) or graphite nanoparticles (GN) for in vivo applications raises a question of their safety. Even though they do not induce a direct toxic effect, due to their unique properties, they can still interact with molecular pathways. The objective of this study was to assess if DN, GO and GN affect three isoforms of cytochrome P450 (CYP) enzymes, namely, CYP1A2, CYP2D6 and CYP3A4, expressed in the liver. METHODS Dose-dependent effect of the DN, GO and GN nanostructures on the catalytic activity of CYPs was examined using microsome-based model. Cytotoxicity of DN, GO and GN, as well as the influence of the nanostructures on mRNA expression of CYP genes and CYP-associated receptor genes were studied in vitro using HepG2 and HepaRG cell lines. RESULTS All three nanostructures interacted with the CYP enzymes and inhibited their catalytic activity in microsomal-based models. CYP gene expression at the mRNA level was also downregulated in HepG2 and HepaRG cell lines. Among the three nanostructures, GO showed the most significant influence on the enzymes, while DN was the most inert. CONCLUSION Our findings revealed that DN, GO and GN might interfere with xenobiotic and drug metabolism in the liver by interactions with CYP isoenzymes responsible for the process. Such results should be considered if DN, GO and GN are used in medical applications.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Szczepaniak
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sylwia Orlińska
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark,
| |
Collapse
|
20
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
21
|
Manjunatha B, Park SH, Kim K, Kundapur RR, Lee SJ. Pristine graphene induces cardiovascular defects in zebrafish (Danio rerio) embryogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:246-254. [PMID: 30176498 DOI: 10.1016/j.envpol.2018.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
The multiple effect of pristine graphene (pG) toxicity on cardiovascular developmental defects was assessed using zebrafish as a model. Recently, the nanotoxicity is emerging as a critical issue, and it is more significant in embryogenesis. Especially, graphene and its derivatives have attracted a lot of interest in biomedical applications. However, very little is known about the toxic effects of pG which has been widely used carbon nanomaterial according to concentration and its effects on biological and cardiovascular development. In the present study, we examined the development of zebrafish embryos by exposing to pG (5, 10, 15, 20 and 25 μg/L) under different developmental toxicity end-points such as cardiotoxicity, cardiovascular defect, retardation of cardiac looping, apoptosis and globin expression analysis. For this, the developmental cardiotoxicity of pG at different concentrations and the specific cardiovascular defects thereof were elucidated for the first time. As a result, the exposure to pG was found to be a potential risk factor to cardiovascular system of zebrafish embryos. However, a further study on the variations of physical, molecular properties and mechanisms of nanotoxicity which vary depending on production method and surface functionalization is required. In addition, the potential risks of pG flakes to aquatic organisms and human health should be considered or checked before releasing them to the environment.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sung Ho Park
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Kiwoong Kim
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | | | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
22
|
Xie J, Zeng Q, Wang M, Ou X, Ma Y, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Transcriptomic Characterization of a Chicken Embryo Model Infected With Duck Hepatitis A Virus Type 1. Front Immunol 2018; 9:1845. [PMID: 30197639 PMCID: PMC6117380 DOI: 10.3389/fimmu.2018.01845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most common and lethal pathogens in young ducklings. Live-attenuated DHAV vaccine (CH60 strain) developed by passaging in chicken embryos provided effective immune protection for ducklings. However, the accurate mechanism for such adaption in chicken embryos is not fully revealed. Here, we utilize RNA-sequencing to perform global transcriptional analysis of DHAV-1-innoculated embryonated livers along with histopathological and ultrastructural analysis. This study revealed that infection with DHAV-1 strain CH60 is associated with enhanced type I and II interferon responses, activated innate immune responses, elevated levels of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3) accompanied with abnormalities in multiple metabolic pathways. Excessive inflammatory and innate immune responses induced by the CH60 strain are related to severe liver damage. Our study presents a comprehensive characterization of the transcriptome of chicken embryos infected with DHAV-CH60 and provides insight for in-depth exploration of viral adaption and virus-host interactions.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Yunchao Ma
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
23
|
Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol Lett 2018; 15:9093-9100. [PMID: 29805641 PMCID: PMC5958779 DOI: 10.3892/ol.2018.8471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor survival as chemotherapy is currently limited to conventional cytotoxic agents. Curcumin has promising anticancer actions against TNBC, but its application is hindered by poor bioavailability and rapid degradation in vivo. In the present study, curcumin-loaded phospholipid nanoparticles (Cur-NPs) conjugated with epidermal growth factor (EGF) were prepared for specific targeting of EGF receptors overexpressed in TNBC. NP formulation was performed by reacting EGF peptide with N-hydroxysuccinimide-Polyethylene Glycol-1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (NHS-PEG10000-DSPE), followed by efficient curcumin loading through lipid film hydration. EGF conjugation did not significantly affect NP size, zeta potential or morphology. Specific targeting was confirmed by EGF receptor activation and blocking of 125I-labeled NP binding by excess EGF. EGF-Cur-NP dose-dependently suppressed MDA-MB-468 TNBC cell survival (IC50, 620 nM), and completely abolished their capacity to form colonies. The cytotoxic effects were more potent compared with those of free curcumin or Cur-NP. In mice bearing MDA-MB-468 tumors, injections of 10 mg/kg EGF-Cur-NP caused a 59.1% retardation of tumor growth at 3 weeks compared with empty NP, whereas the antitumor effect of Cur-NP was weak. These results indicate that EGF-conjugated NHS-PEG10000-DSPE phospholipid NPs loaded with curcumin may be useful for treating TNBCs that overexpress the EGF receptor.
Collapse
|
24
|
Manatunga DC, de Silva RM, de Silva KMN, Malavige GN, Wijeratne DT, Williams GR, Jayasinghe CD, Udagama PV. Effective delivery of hydrophobic drugs to breast and liver cancer cells using a hybrid inorganic nanocarrier: A detailed investigation using cytotoxicity assays, fluorescence imaging and flow cytometry. Eur J Pharm Biopharm 2018; 128:18-26. [PMID: 29625162 DOI: 10.1016/j.ejpb.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ± 0.3% and 97.37 ± 0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ± 0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.
Collapse
Affiliation(s)
| | - Rohini M de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka.
| | - K M Nalin de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka
| | - Gathsaurie Neelika Malavige
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Dulharie T Wijeratne
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | - Preethi V Udagama
- Department of Zoology, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
25
|
Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M, Kawahara M, Andoh A. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 2017; 12:e0185999. [PMID: 28985227 PMCID: PMC5630155 DOI: 10.1371/journal.pone.0185999] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/22/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIMS Curcumin is a hydrophobic polyphenol derived from turmeric, a traditional Indian spice. Curcumin exhibits various biological functions, but its clinical application is limited due to its poor absorbability after oral administration. A newly developed nanoparticle curcumin shows improved absorbability in vivo. In this study, we examined the effects of nanoparticle curcumin (named Theracurmin) on experimental colitis in mice. METHODS BALB/c mice were fed with 3% dextran sulfate sodium (DSS) in water. Mucosal cytokine expression and lymphocyte subpopulation were analyzed by real-time PCR and flow cytometry, respectively. The profile of the gut microbiota was analyzed by real-time PCR. RESULTS Treatment with nanoparticle curcumin significantly attenuated body weight loss, disease activity index, histological colitis score and significantly improved mucosal permeability. Immunoblot analysis showed that NF-κB activation in colonic epithelial cells was significantly suppressed by treatment with nanoparticle curcumin. Mucosal mRNA expression of inflammatory mediators was significantly suppressed by treatment with nanoparticle curcumin. Treatment with nanoparticle curcumin increased the abundance of butyrate-producing bacteria and fecal butyrate level. This was accompanied by increased expansion of CD4+ Foxp3+ regulatory T cells and CD103+ CD8α- regulatory dendritic cells in the colonic mucosa. CONCLUSIONS Treatment with nanoparticle curcumin suppressed the development of DSS-induced colitis potentially via modulation of gut microbial structure. These responses were associated with induction of mucosal immune cells with regulatory properties. Nanoparticle curcumin is one of the promising candidates as a therapeutic option for the treatment of IBD.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiko Sugitani
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kyohei Nishino
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
26
|
Kurantowicz N, Sawosz E, Halik G, Strojny B, Hotowy A, Grodzik M, Piast R, Pasanphan W, Chwalibog A. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int J Nanomedicine 2017; 12:2887-2898. [PMID: 28435265 PMCID: PMC5391155 DOI: 10.2147/ijn.s131960] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the present study, the toxicity of six different types of carbon nanoparticles (CNPs) was investigated using a chicken-embryo model. Fertilized chicken eggs were divided into the following treatment groups: placebo, diamond NPs, graphite NPs, pristine graphene, small graphene oxide, large graphene oxide, and reduced graphene oxide. Experimental solutions at a concentration of 500 μg/mL were administrated into the egg albumin. Gross pathology and the rate of survival were examined after 5, 10, 15, and 20 days of incubation. After 20 days of incubation, blood samples were collected and the weight of the body and organs measured. The relative ratio of embryo survival decreased after treatment all treatments except diamond NPs. There was no correlation between the rate of survival and the ζ-potential or the surface charge of the CNPs in solution. Body and organ weight, red blood-cell morphology, blood serum biochemical parameters, and oxidative damage in the liver did not differ among the groups. These results indicate that CNPs can remain in blood circulation without any major side effects, suggesting their potential applicability as vehicles for drug delivery or active compounds per se. However, there is a need for further investigation of their properties, which vary depending on production methods and surface functionalization.
Collapse
Affiliation(s)
- Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Gabriela Halik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Anna Hotowy
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | | | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules 2017; 22:molecules22030395. [PMID: 28273819 PMCID: PMC6155418 DOI: 10.3390/molecules22030395] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals—curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol—in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|