1
|
Chen P, Ren L, Guo Y, Sun Y. Boosting antitumor immunity in breast cancers: Potential of adjuvants, drugs, and nanocarriers. Int Rev Immunol 2025; 44:141-164. [PMID: 39611269 DOI: 10.1080/08830185.2024.2432499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Despite advancements in breast cancer treatment, therapeutic resistance, and tumor recurrence continue to pose formidable challenges. Therefore, a deep knowledge of the intricate interplay between the tumor and the immune system is necessary. In the pursuit of combating breast cancer, the awakening of antitumor immunity has been proposed as a compelling avenue. Tumor stroma in breast cancers contains multiple stromal and immune cells that impact the resistance to therapy and also the expansion of malignant cells. Activating or repressing these stromal and immune cells, as well as their secretions can be proposed for exhausting resistance mechanisms and repressing tumor growth. NK cells and T lymphocytes are the prominent components of breast tumor immunity that can be triggered by adjuvants for eradicating malignant cells. However, stromal cells like endothelial and fibroblast cells, as well as some immune suppressive cells, consisting of premature myeloid cells, and some subsets of macrophages and CD4+ T lymphocytes, can dampen antitumor immunity in favor of breast tumor growth and therapy resistance. This review article aims to research the prospect of harnessing the power of drugs, adjuvants, and nanoparticles in awakening the immune reactions against breast malignant cells. By investigating the immunomodulatory properties of pharmacological agents and the synergistic effects of adjuvants, this review seeks to uncover the mechanisms through which antitumor immunity can be triggered. Moreover, the current review delineates the challenges and opportunities in the translational journey from bench to bedside.
Collapse
Affiliation(s)
- Ping Chen
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Ren
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Youwei Guo
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Yan Sun
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
2
|
Wu CC, Chen MS, Chen JY. The Application of Emodin Treatment on Nasopharyngeal Carcinoma Therapy. Biomedicines 2024; 12:486. [PMID: 38540100 PMCID: PMC10967729 DOI: 10.3390/biomedicines12030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 01/03/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy prevailing in Taiwan, Hong Kong, Southern China, Southeast Asia, and North Africa. Although early-stage NPC responds well to the primary treatment of radio-chemotherapy, the mortality rate of advanced NPC remains high. Therefore, developing new therapies for nasopharyngeal carcinoma is an urgent task. Emodin is an anthraquinone derivative mainly found in Rheum palmatum. Emodin has been found to possess many anti-cancer functions against various types of cancers, but they are less discussed in the treatment of NPC. This review organized the different studies about the anti-NPC activity of emodin and discussed the potential and challenges of emodin treatment in NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 404447, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| |
Collapse
|
3
|
Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med 2023; 21:827. [PMID: 37978384 PMCID: PMC10657029 DOI: 10.1186/s12967-023-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Changgang Sun
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
4
|
Okon E, Gaweł-Bęben K, Jarzab A, Koch W, Kukula-Koch W, Wawruszak A. Therapeutic Potential of 1,8-Dihydroanthraquinone Derivatives for Breast Cancer. Int J Mol Sci 2023; 24:15789. [PMID: 37958772 PMCID: PMC10648492 DOI: 10.3390/ijms242115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
5
|
Del Nero M, Colombo A, Garbujo S, Baioni C, Barbieri L, Innocenti M, Prosperi D, Colombo M, Fiandra L. Advanced Cell Culture Models Illuminate the Interplay between Mammary Tumor Cells and Activated Fibroblasts. Cancers (Basel) 2023; 15:cancers15092498. [PMID: 37173963 PMCID: PMC10177476 DOI: 10.3390/cancers15092498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The interaction between tumor cells and activated fibroblasts determines malignant features of desmoplastic carcinomas such as rapid growth, progression towards a metastatic phenotype, and resistance to chemotherapy. On one hand, tumor cells can activate normal fibroblasts and even reprogram them into CAFs through complex mechanisms that also involve soluble factors. Among them, transforming growth factor beta (TGF-β) and Platelet-Derived Growth Factor (PDGF) have an established role in the acquisition of pro-tumorigenic phenotypes by fibroblasts. On the other hand, activated fibroblasts release Interleukin-6 (IL-6), which increases tumor-cell invasiveness and chemoresistance. However, the interplay between breast cancer cells and fibroblasts, as well as the modes of action of TGF-β, PDGF, and IL-6, are difficult to investigate in vivo. Here, we validated the usage of advanced cell culture models as tools to study the interplay between mammary tumor cells and fibroblasts, taking mouse and human triple-negative tumor cells and fibroblasts as a case study. We employed two different settings, one permitting only paracrine signaling, the other both paracrine and cell-contact-based signaling. These co-culture systems allowed us to unmask how TGF-β, PDGF and IL-6 mediate the interplay between mammary tumor cells and fibroblasts. We found that the fibroblasts underwent activation induced by the TGF-β and the PDGF produced by the tumor cells, which increased their proliferation and IL-6 secretion. The IL-6 secreted by activated fibroblasts enhanced tumor-cell proliferation and chemoresistance. These results show that these breast cancer avatars possess an unexpected high level of complexity, which resembles that observed in vivo. As such, advanced co-cultures provide a pathologically relevant tractable system to study the role of the TME in breast cancer progression with a reductionist approach.
Collapse
Affiliation(s)
- Martina Del Nero
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandro Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Garbujo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Chiara Baioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
6
|
|
7
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
9
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
10
|
Chen R, Huang L, Hu K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm Sin B 2020; 10:2140-2155. [PMID: 33304782 PMCID: PMC7714988 DOI: 10.1016/j.apsb.2020.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance. Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy. Recently, through modulating cancer-associated fibroblasts (CAFs) which are the most abundant cell type among all stromal cells, natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells, showing promising ability to improve treatment effects on desmoplastic tumors. In this review, we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products, highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.
Collapse
Affiliation(s)
- Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Chen Y, Mei X, Gan D, Wu Z, Cao Y, Lin M, Zhang N, Yang T, Chen Y, Hu J. Integration of bioinformatics and experiments to identify TP53 as a potential target in Emodin inhibiting diffuse large B cell lymphoma. Biomed Pharmacother 2018; 107:226-233. [PMID: 30096626 DOI: 10.1016/j.biopha.2018.07.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin's Lymphoma (NHL) is a group of lymphoid malignancies with unsatisfactory treatment effect in some aggressive subtypes, including diffuse large B cell lymphoma (DLBCL). Emodin is an anthraquinone with potent anti-cancer activities. However, the molecular mechanism of Emodin repressing aggressive NHL remains to be revealed in detail. This study delineated the active mechanism of Emodin action in aggressive NHL by using bioinformatics analysis and in vitro assay. 4 Emodin's primary direct protein targets (DPT) were identified and the DPTs-associated proteins/genes were predicted. Those Emodin-related proteins/genes were subject to enrich Emodin-associated pathways, from which 3 significantly NHL-related signal pathways were refined identified. Advanced integrated analysis exhibited TP53 and PI3K as the significant molecule and pathway by which Emodin may function in NHL. To verify those bioinformatics findings, effects of Emodin and E35, a novel derivative of emodin were investigated on DLBCL cell lines SU-DHL4. Emodin and E35 suppressed proliferation and induced apoptosis of SU-DHL4 cells in a time- and dose-dependent manner. Emodin and E35 declined TP53 protein expression and decreased phosphorylation of PI3K/AKT protein in a dose-dependent manner. All of above showed that combined bioinformatics analysis with experiments offered a novel approach for outlining the mechanisms of Emodin action in DLBCL with convenience and integrity.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xuqiao Mei
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Donghui Gan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Zhengjun Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yanqin Cao
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Minhui Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Na Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Ting Yang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yingyu Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China.
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China.
| |
Collapse
|
12
|
Song K, Lv T, Chen Y, Diao Y, Yao Q, Wang Y. Emodin inhibits TGF-β2 by activating the FOXD3/miR‑199a axis in ovarian cancer cells in vitro. Oncol Rep 2018; 39:2063-2070. [PMID: 29512773 PMCID: PMC5928761 DOI: 10.3892/or.2018.6301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is a highly metastatic malignancy and a leading cause of cancer-related death in postmenopausal women. Emodin is a natural anthraquinone isolated from several traditional Chinese medicines including Rhubarb and Polygonum cuspidatum. Recently, emodin was demonstrated to reduce the growth of human ovarian carcinoma cells. However, the mechanism remains unclear. In the present study, we identified that transforming growth factor (TGF)-β2 was significantly affected by emodin treatment in A2780 cells using microarray analysis. MicroRNA (miR)-199a was predicted as a potential miRNA targeting TGF-β2 by in silico prediction using TargetScan. The mRNA and protein levels of TGF-β2 were both significantly reduced by miR-199a. Spearman's correlation analysis revealed a significant correlation between the expression level of miR-199a and TGF-β2 in human ovarian cancer specimens. Silencing of miR-199a with miR-199a inhibitor significantly restored the reduction in TGF-β2 expression induced by emodin. Additionally, cell viability and colony formation of A2780 cells were markedly inhibited by emodin treatment, which was mediated by miR-199a. We analyzed the primary mature miR-199a-1 and miR-199a-2 transcripts in A2780 cells treated with emodin or dimethyl sulfoxide (DMSO) and found that only pri-miR-199a-1 was regulated by emodin. A conserved binding site of Forkhead box D3 (FOXD3) was identified within pri-miR-199a-1. We further revealed that miR-199a expression was significantly regulated by FOXD3. Taken together, the present study demonstrated that emodin may directly promote FOXD3 expression and sequentially activates miR-199a, which in turn suppresses the expression of TGF-β2 to reduce cell viability and colony formation of A2780 cells.
Collapse
Affiliation(s)
- Kejuan Song
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Teng Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuchao Diao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yankui Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
13
|
Chatterjee S, Basak P, Buchel E, Safneck J, Murphy LC, Mowat M, Kung SK, Eirew P, Eaves CJ, Raouf A. Breast Cancers Activate Stromal Fibroblast-Induced Suppression of Progenitors in Adjacent Normal Tissue. Stem Cell Reports 2017; 10:196-211. [PMID: 29233553 PMCID: PMC5768884 DOI: 10.1016/j.stemcr.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer cells are known to activate adjacent “normal-like” cells to enhance their own growth, but the cellular and molecular mechanisms involved are poorly understood. We now show by both phenotypic and functional measurements that normal human mammary progenitor cells are significantly under-represented in the mammary epithelium of patients' tumor-adjacent tissue (TAT). Interestingly, fibroblasts isolated from TAT samples showed a reduced ability to support normal EGF-stimulated mammary progenitor cell proliferation in vitro via their increased secretion of transforming growth factor β. In contrast, TAT fibroblasts promoted the proliferation of human breast cancer cells when these were co-transplanted in immunodeficient mice. The discovery of a common stromal cell-mediated mechanism that has opposing growth-suppressive and promoting effects on normal and malignant human breast cells and also extends well beyond currently examined surgical margins has important implications for disease recurrence and its prevention. Alterations to the breast tissue extend as far as 6 cm away from the primary tumors The matching contralateral non-tumor-bearing breast tissue remains unaltered Tumor-adjacent breast tissue contained significantly diminished progenitor pool Extending surgical margins may not be effective in reducing risk of tumor recurrence
Collapse
Affiliation(s)
- Sumanta Chatterjee
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pratima Basak
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Edward Buchel
- Department of Surgery, Section of Plastic Surgery, Faculty of Health Sciences University of Manitoba, Winnipeg, MB R3A 1M5, Canada
| | - Janice Safneck
- Department of Pathology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Leigh C Murphy
- Research Institute of Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Mowat
- Research Institute of Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sam K Kung
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Peter Eirew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Research Institute of Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
14
|
Lin B, Harris DR, Kirkman LMD, Perez AM, Qian Y, Schermerhorn JT, Hong MY, Winston DS, Xu L, Brandt GS. FIKK Kinase, a Ser/Thr Kinase Important to Malaria Parasites, Is Inhibited by Tyrosine Kinase Inhibitors. ACS OMEGA 2017; 2:6605-6612. [PMID: 30023525 PMCID: PMC6044879 DOI: 10.1021/acsomega.7b00997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/27/2017] [Indexed: 06/08/2023]
Abstract
A relatively high-affinity inhibitor of FIKK kinase from the malaria parasite Plasmodium vivax was identified by in vitro assay of recombinant kinase. The FIKK kinase family is unique to parasitic organisms of the Apicomplexan order and has been shown to be critical in malaria parasites. The recombinant kinase domain was expressed and screened against a small molecule library, revealing a number of tyrosine kinase inhibitors that block FIKK kinase activity. A family of tyrphostins was further investigated, to begin exploring the FIKK kinase pharmacophore. Finally, emodin was identified as a relatively high-affinity FIKK kinase inhibitor, identifying this family of anthraquinones as potential lead compounds for the development of antimalarials targeting the FIKK kinase.
Collapse
|