1
|
Runno-Paurson E, Agho CA, Nassar H, Hansen M, Leitaru K, Hallikma T, Cooke DEL, Niinemets Ü. The Variability of Phytophthora infestans Isolates Collected from Estonian Islands in the Baltic Sea. PLANT DISEASE 2024; 108:1645-1658. [PMID: 38127634 DOI: 10.1094/pdis-07-23-1399-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Knowledge of a pathogen's genetic variability and population structure is of great importance to effective disease management. In this study, 193 isolates of Phytophthora infestans collected from three Estonian islands were characterized over 3 years using simple sequence repeat (SSR) marker data complemented by information on their mating type and resistance to metalaxyl. In combination with SSR marker data from samples in the neighboring Pskov region of Northwest Russia, the impact of regional and landscape structure on the level of genetic exchange was also examined. Among the 111 P. infestans isolates from Estonian islands, 49 alleles were detected among 12 SSR loci, and 59 SSR multilocus genotypes were found, of which 64% were unique. The genetic variation was higher among years than that among islands, as revealed by the analysis of molecular variance. The frequency of metalaxyl-resistant isolates increased from 9% in 2012 to 30% in 2014, and metalaxyl resistance was most frequent among A1 isolates. The test for isolation by distance among the studied regions was not significant, and coupled with the absence of genetic differentiation, the result revealed gene flow and the absence of local adaptation. The data are consistent with a sexual population in which diversity is driven by an annual germination of soilborne oospores. The absence of shared genotypes over the years has important implications when it comes to the management of diseases. Such population diversity can make it difficult to predict the nature of the outbreak in the coming year as the genetic makeup is different for each year.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Collins A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kätlin Leitaru
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
2
|
de Souza TD, de Godoy SM, Feliciano DC, Binneck E, Rangel DEN, Sosa-Gómez DR. Genetic diversity of the entomopathogenic fungus Metarhizium rileyi based on de novo microsatellite markers. J Invertebr Pathol 2024; 204:108081. [PMID: 38458349 DOI: 10.1016/j.jip.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Epizootics of the entomopathogenic fungus Metarhizium rileyi regulate lepidopteran populations in soybean, cotton, and peanut agroecosystems to the point that insecticide applications could be unnecessary. However, the contribution and how different strains operate during the epizootic are unknown. Several unanswered questions remain: 1. How many genotypes of M. rileyi are present during an epizootic? 2. Which genotype is the most common among them? 3. Are the genotypes involved in annual epizootics at the same location the same? Therefore, the development of molecular markers to accurately identify these genotypes is very important to answer these questions. SSR primers were designed by prospecting in silico to discriminate genotypes and infer the genetic diversity of M. rileyi isolates from the collection kept at Embrapa Soybean. We tested 13 SSR markers on 136 isolates to identify 43 clones and 12 different genetic clusters, with genetic diversity ranging from Hs = 0.15 (cluster I) to Hs = 0.41 (cluster IV) and an average diversity of 0.24. No clusters were categorically distinguished based on hosts or geographical origin using Bayesian clustering analysis. Nonetheless, some clusters comprised most of the isolates with a common geographic origin; for example, cluster VIII was mainly composed of isolates from Central-western Brazil, cluster II from Southern Brazil, and cluster XII from Quincy, Northern Florida, in the United States. Underrepresented regions (few isolates) from Pacific Island nations of Japan, the Philippines, and Indonesia (specifically from Java) were placed into clusters IX and X. Although the analyzed isolates displayed evidence of clonal structure, the genetic diversity indices suggest a potential for the species to adapt to different environmental conditions.
Collapse
Affiliation(s)
- Tamires Doroteo de Souza
- Department of Zoology, Biological Science Sector, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Daniele C Feliciano
- Department of General Biology, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, 85660-000, Dois Vizinhos, PR, Brazil
| | | |
Collapse
|
3
|
Agho CA, Śliwka J, Nassar H, Niinemets Ü, Runno-Paurson E. Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers. Microorganisms 2024; 12:982. [PMID: 38792811 PMCID: PMC11124124 DOI: 10.3390/microorganisms12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Phytophthora infestans is the causal agent of late blight in potato. The occurrence of P. infestans with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of traits can be highly aggressive, resistant to fungicides, and can make the disease difficult to control in the field. Metalaxyl-resistant isolates are now more prevalent in potato fields. Understanding the genetic structure and rapid identification of mating types and metalaxyl response of P. infestans in the field is a prerequisite for effective late blight disease monitoring and management. Molecular and phenotypic assays involving molecular and phenotypic markers such as mating types and metalaxyl response are typically conducted separately in the studies of the genotypic and phenotypic diversity of P. infestans. As a result, there is a pressing need to reduce the experimental workload and more efficiently assess the aggressiveness of different strains. We think that employing genetic markers to not only estimate genotypic diversity but also to identify the mating type and fungicide response using machine learning techniques can guide and speed up the decision-making process in late blight disease management, especially when the mating type and metalaxyl resistance data are not available. This technique can also be applied to determine these phenotypic traits for dead isolates. In this study, over 600 P. infestans isolates from different populations-Estonia, Pskov region, and Poland-were classified for mating types and metalaxyl response using machine learning techniques based on simple sequence repeat (SSR) markers. For both traits, random forest and the support vector machine demonstrated good accuracy of over 70%, compared to the decision tree and artificial neural network models whose accuracy was lower. There were also associations (p < 0.05) between the traits and some of the alleles detected, but machine learning prediction techniques based on multilocus SSR genotypes offered better prediction accuracy.
Collapse
Affiliation(s)
- Collins A. Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Department of Potato Genetics and Parental Lines, Platanowa Str. 19, 05-831 Młochów, Poland
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
4
|
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl Microbiol Biotechnol 2024; 108:237. [PMID: 38407622 PMCID: PMC10896882 DOI: 10.1007/s00253-024-13040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
Collapse
Affiliation(s)
- Segun Babarinde
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Rishi R Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada.
| | - Rick D Peters
- Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Khalil Al-Mughrabi
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, 39 Barker Lane, Wicklow, NB, E7L 3S4, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
5
|
Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora. IMA Fungus 2023; 14:4. [PMID: 36823663 PMCID: PMC9951538 DOI: 10.1186/s43008-023-00109-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
Collapse
|
6
|
Runno-Paurson E, Nassar H, Tähtjärv T, Eremeev V, Hansen M, Niinemets Ü. High Temporal Variability in Late Blight Pathogen Diversity, Virulence, and Fungicide Resistance in Potato Breeding Fields: Results from a Long-Term Monitoring Study. PLANTS 2022; 11:plants11182426. [PMID: 36145827 PMCID: PMC9502785 DOI: 10.3390/plants11182426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Long-term site-specific studies describing changes in the phenotypic variability of Phytophthora infestans populations allow quantitative predictions of pathogen spread and possible outbreaks of epidemics, and provide key input for regional resistance breeding programs. Late blight samples were collected from potato (Solanum tuberosum) breeding fields in Estonia during a twelve-year study period between 2001 and 2014. In total, 207 isolates were assessed for mating type and 235 isolates for metalaxyl resistance and 251 isolates for virulence factors. The frequency of mating types strongly fluctuated across the years, whereas the later period of 2010–2014 was dominated by the A2 mating. Despite fluctuations, both mating types were recorded in the same fields in most years, indicating sustained sexual reproduction of P. infestans with oospore production. Metalaxyl-resistant and intermediately resistant strains dominated in the first years of study, but with the progression of the study, metalaxyl-sensitive isolates became dominant, reaching up to 88%. Racial diversity, characterized by normalized Shannon diversity index decreased in time, varying from 1.00 in 2003 to 0.43 in 2013. The frequency of several virulence factors changed in a time-dependent manner, with R2 increasing and R6, R8, and R9 decreasing in time. Potato cultivar resistance background did not influence the frequency of P. infestans mating type, response to metalaxyl, and racial diversity. However, the diversity index decreased in time among isolates collected from resistant and susceptible cultivars, and remained at a high level in moderately resistant cultivars. These data demonstrate major time-dependent changes in racial diversity, fungicide resistance, and virulence factors in P. infestans, consistent with alterations in the control strategies and popularity of potato cultivars with different resistance.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Correspondence:
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Terje Tähtjärv
- Estonian Crop Research Institute, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - Viacheslav Eremeev
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
7
|
Runno-Paurson E, Agho CA, Zoteyeva N, Koppel M, Hansen M, Hallikma T, Cooke DEL, Nassar H, Niinemets Ü. Highly Diverse Phytophthora infestans Populations Infecting Potato Crops in Pskov Region, North-West Russia. J Fungi (Basel) 2022; 8:472. [PMID: 35628727 PMCID: PMC9147476 DOI: 10.3390/jof8050472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
There is limited understanding of the genetic variability in Phytophthora infestans in the major potato cultivation region of north-western Russia, where potato is grown primarily by small households with limited chemical treatment of late blight. In this study, the mating type, sensitivity to metalaxyl, and genotype and population genetic diversity (based on 12 simple sequence repeat (SSR) markers) of 238 isolates of P. infestans from the Pskov region during the years 2010-2013 were characterized. The aim was to examine the population structure, phenotypic and genotypic diversity, and the prevalent reproductive mode of P. infestans, as well as the influence of the location, time, and agricultural management practices on the pathogen population. The frequency of the A2 mating was stable over the four seasons and ranged from 33 to 48% of the sampled population. Both mating types occurred simultaneously in 90% of studied fields, suggesting the presence of sexual reproduction and oospore production in P. infestans in the Pskov region. Metalaxyl-sensitive isolates prevailed in all four years (72%), however, significantly fewer sensitive isolates were found in samples from large-scale conventional fields. A total of 50 alleles were detected in the 141 P. infestans isolates analyzed for genetic diversity. Amongst the 83 SSR multilocus genotypes (MLGs) detected, 65% were unique and the number of MLGs varied between locations from 3 to 20. These results, together with the high genotypic diversity observed in all the locations and the lack of significance of linkage disequilibrium, suggest that sexual recombination is likely responsible for the unique MLGs and the high genetic diversity found in the Pskov region population, resembling those of north-eastern European populations.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Collins A. Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Nadezda Zoteyeva
- N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | | | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (C.A.A.); (M.K.); (M.H.); (T.H.); (H.N.); (Ü.N.)
| |
Collapse
|
8
|
Van der Heyden H, Dutilleul P, Duceppe M, Bilodeau GJ, Charron J, Carisse O. Genotyping by sequencing suggests overwintering of Peronospora destructor in southwestern Québec, Canada. MOLECULAR PLANT PATHOLOGY 2022; 23:339-354. [PMID: 34921486 PMCID: PMC8828460 DOI: 10.1111/mpp.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/19/2023]
Abstract
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec-Les Jardins de Napierville-to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.
Collapse
Affiliation(s)
- Hervé Van der Heyden
- Cie de Recherche PhytodataSherringtonQuébecCanada
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | - Pierre Dutilleul
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | | | | | | | - Odile Carisse
- Agriculture and Agri‐Food CanadaSt‐Jean‐sur‐RichelieuQuébecCanada
| |
Collapse
|
9
|
Xue W, Haynes KG, Qu X. Resistance to Phytophthora infestans Clonal Lineage US-23 in Potato Cultivars and Its Relationship with Early Blight Resistance and Tuber Yield. PLANT DISEASE 2021; 105:3956-3966. [PMID: 34232057 DOI: 10.1094/pdis-03-21-0594-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resistance to late blight caused by Phytophthora infestans clonal lineage US-23 in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91, with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into five groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield, and resistance to early blight caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield trade-off associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.
Collapse
Affiliation(s)
- Weiya Xue
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802
| | - Kathleen G Haynes
- Genetic Improvement of Fruits and Vegetables Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD 20705
| | - Xinshun Qu
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
10
|
Weldon WA, Knaus BJ, Grünwald NJ, Havill JS, Block MH, Gent DH, Cadle-Davidson LE, Gadoury DM. Transcriptome-Derived Amplicon Sequencing Markers Elucidate the U.S. Podosphaera macularis Population Structure Across Feral and Commercial Plantings of Humulus lupulus. PHYTOPATHOLOGY 2021; 111:194-203. [PMID: 33044132 DOI: 10.1094/phyto-07-20-0299-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.
Collapse
Affiliation(s)
- William A Weldon
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR 97330
| | - Joshua S Havill
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Mary H Block
- Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - David H Gent
- U.S. Department of Agriculture-Agricultural Research Service Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Lance E Cadle-Davidson
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
- U.S. Department of Agriculture-Agricultural Research Service Grape Genetics Research Unit, Geneva, NY 14456
| | - David M Gadoury
- Section of Plant Pathology and Plant-Microbe Biology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
11
|
Genetic Diversity and Population Structure of Races of Fusarium oxysporum Causing Cotton Wilt. G3-GENES GENOMES GENETICS 2020; 10:3261-3269. [PMID: 32690585 PMCID: PMC7466959 DOI: 10.1534/g3.120.401187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To better understand the evolution of virulence we are interested in identifying the genetic basis of this trait in pathogenic fungi and in developing tools for the rapid characterization of variation in virulence among populations associated with epidemics. Fusarium oxysporum f. sp. vasinfectum (FOV) is a haploid fungus that causes devastating outbreaks of Fusarium wilt of cotton wherever it is grown. In the United States, six nominal races and eleven genotypes of FOV have been characterized based on the translation elongation factor (EF-1α) gene and intergenic spacer region (IGS), but it is unclear how race or genotype based on these regions relates to population structure or virulence. We used genotyping-by-sequencing to identify SNPs and determine genetic diversity and population structure among 86 diverse FOV isolates. Six individuals of Fusarium oxysporum closely related to FOV were genotyped and included in some analyses. Between 193 and 354 SNPs were identified and included in the analyses depending on the pipeline and filtering criteria used. Phylogenetic trees, minimum spanning networks (MSNs), principal components analysis (PCA), and discriminant analysis of principal components (DAPC) demonstrated that races and genotypes of FOV are generally not structured by EF-1α genotype, nor are they monophyletic groups with the exception of race 4 isolates, which are distinct. Furthermore, DAPC identified between 11 and 14 genetically distinct clusters of FOV, whereas only eight EF-1α genotypes were represented among isolates; suggesting that FOV, especially isolates within the widely distributed and common race 1 genotype, is more genetically diverse than currently recognized.
Collapse
|
12
|
Ayala-Usma DA, Danies G, Myers K, Bond MO, Romero-Navarro JA, Judelson HS, Restrepo S, Fry WE. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism Markers Associated with Mycelial Growth (at 15, 20, and 25°C), Mefenoxam Resistance, and Mating Type in Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:822-833. [PMID: 31829117 DOI: 10.1094/phyto-06-19-0206-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotypic diversity among individuals defines the potential for evolutionary selection in a species. Phytophthora infestans epidemics are generally thought to be favored by moderate to low temperatures, but temperatures in many locations worldwide are expected to rise as a result of global climate change. Thus, we investigated variation among individuals of P. infestans for relative growth at different temperatures. Isolates of P. infestans came from three collections: (i) individual genotypes recently dominant in the United States, (ii) recently collected individuals from Central Mexico, and (iii) progeny of a recent sexual recombination event in the northeastern United States. In general, these isolates had optimal mycelial growth rates at 15 or 20°C. However, two individuals from Central Mexico grew better at higher temperatures than did most others and two individuals grew relatively less at higher temperatures than did most others. The isolates were also assessed for mefenoxam sensitivity and mating type. Each collection contained individuals of diverse sensitivities to mefenoxam and individuals of the A1 and A2 mating type. We then searched for genomic regions associated with phenotypic diversity using genotyping-by-sequencing. We found one single nucleotide polymorphism (SNP) associated with variability in mycelial growth at 20°C, two associated with variability in mycelial growth at 25°C, two associated with sensitivity to mefenoxam, and one associated with mating type. Interestingly, the SNPs associated with mefenoxam sensitivity were found in a gene-sparse region, whereas the SNPs associated with growth at the two temperatures and mating type were found both at more gene-dense regions.
Collapse
Affiliation(s)
- D A Ayala-Usma
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - G Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia
| | - K Myers
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - M O Bond
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- Department of Botany, University of Hawaii, Mānoa, HI, U.S.A
| | - J A Romero-Navarro
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - H S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - S Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - W E Fry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
13
|
Saville A, Ristaino JB. Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of Phytophthora infestans. PHYTOPATHOLOGY 2019; 109:1614-1627. [PMID: 31066347 DOI: 10.1094/phyto-09-18-0357-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.
Collapse
Affiliation(s)
- Amanda Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
14
|
Carleson NC, Fieland VJ, Scagel CF, Weiland JE, Grünwald NJ. Population Structure of Phytophthora plurivora on Rhododendron in Oregon Nurseries. PLANT DISEASE 2019; 103:1923-1930. [PMID: 31140922 DOI: 10.1094/pdis-12-18-2187-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora plurivora is a recently described plant pathogen, formerly recognized as P. citricola. Recent sampling of Pacific Northwest nurseries frequently encountered this pathogen, and it has been shown to be among the most damaging Phytophthora pathogens on ornamentals. We characterized the population structure of P. plurivora in a survey of four Oregon nurseries across three different counties with focus on Rhododendron hosts. Isolates were identified to the species level by Sanger sequencing and/or a PCR-RFLP assay of the internal transcribed spacer (ITS) region. We used genotyping-by-sequencing to determine genetic diversity. Variants were called de novo, resulting in 284 high-quality variants for 61 isolates after stringent filtering. Based on Fst and AMOVA, populations were moderately differentiated among nurseries. Overall, population structure suggested presence of one dominant clonal lineage in all nurseries, as well as isolates of cryptic diversity mostly found in one nursery. Within the clonal lineage, there was a broad range of sensitivity to mefenoxam and phosphorous acid. Sensitivity of the two fungicides was correlated. P. plurivora was previously assumed to spread clonally, and the low genotypic diversity observed within and among isolates corroborated this hypothesis. The broad range of fungicide sensitivity within the P. plurivora population found in PNW nurseries has implications for managing disease caused by this important nursery pathogen. These findings provide the first perspective into P. plurivora population structure and phenotypic plasticity in Pacific Northwest nurseries.
Collapse
Affiliation(s)
- Nicholas C Carleson
- 1Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR
| | - Valerie J Fieland
- 1Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR
| | - Carolyn F Scagel
- 2Horticultural Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR
| | - Jerry E Weiland
- 2Horticultural Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR
| | - Niklaus J Grünwald
- 2Horticultural Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR
| |
Collapse
|
15
|
Vieira A, Silva DN, Várzea V, Paulo OS, Batista D. Novel insights on colonization routes and evolutionary potential of Colletotrichum kahawae, a severe pathogen of Coffea arabica. MOLECULAR PLANT PATHOLOGY 2018; 19:2488-2501. [PMID: 30073748 PMCID: PMC6638157 DOI: 10.1111/mpp.12726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
Pathogenic fungi are emerging at an increasing rate on a wide range of host plants, leading to tremendous threats to the global economy and food safety. Several plant pathogens have been considered to be invasive species, rendering large-scale population genomic analyses crucial to better understand their demographic history and evolutionary potential. Colletotrichum kahawae (Ck) is a highly aggressive and specialized pathogen, causing coffee berry disease in Arabica coffee in Africa. This pathogen leads to severe production losses and its dissemination out of Africa is greatly feared. To address this issue, a population genomic approach using thousands of single nucleotide polymorphisms (SNPs) spaced throughout the genome was used to unveil its demographic history and evolutionary potential. The current study confirms that Ck is a true clonal pathogen, perfectly adapted to green coffee berries, with three completely differentiated populations (Angolan, Cameroonian and East African). Two independent clonal lineages were found within the Angolan population as opposed to the remaining single clonal populations. The most probable colonization scenario suggests that this pathogen emerged in Angola and immediately dispersed to East Africa, where these two populations began to differentiate, followed by the introduction in Cameroon from an Angolan population. However, the differentiation between the two Angolan clonal lineages masks the mechanism for the emergence of the Cameroonian population. Our results suggest that Ck is completely differentiated from the ancestral lineage, has a low evolutionary potential and a low dispersion ability, with human transport the most likely scenario for its potential dispersion, which makes the fulfilment of the quarantine measures and management practices implemented crucial.
Collapse
Affiliation(s)
- Ana Vieira
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Diogo Nuno Silva
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Victor Várzea
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Octávio Salgueiro Paulo
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
| | - Dora Batista
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| |
Collapse
|
16
|
Vaghefi N, Kikkert JR, Bolton MD, Hanson LE, Secor GA, Nelson SC, Pethybridge SJ. Global genotype flow in Cercospora beticola populations confirmed through genotyping-by-sequencing. PLoS One 2017; 12:e0186488. [PMID: 29065114 PMCID: PMC5655429 DOI: 10.1371/journal.pone.0186488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/01/2017] [Indexed: 11/18/2022] Open
Abstract
Genotyping-by-sequencing (GBS) was conducted on 333 Cercospora isolates collected from Beta vulgaris (sugar beet, table beet and swiss chard) in the USA and Europe. Cercospora beticola was confirmed as the species predominantly isolated from leaves with Cercospora leaf spot (CLS) symptoms. However, C. cf. flagellaris also was detected at a frequency of 3% in two table beet fields in New York. Resolution of the spatial structure and identification of clonal lineages in C. beticola populations using genome-wide single nucleotide polymorphisms (SNPs) obtained from GBS was compared to genotyping using microsatellites. Varying distance thresholds (bitwise distance = 0, 1.854599 × 10-4, and 1.298 × 10-3) were used for delineation of clonal lineages in C. beticola populations. Results supported previous reports of long distance dispersal of C. beticola through genotype flow. The GBS-SNP data set provided higher resolution in discriminating clonal lineages; however, genotype identification was impacted by filtering parameters and the distance threshold at which the multi-locus genotypes (MLGs) were contracted to multi-locus lineages. The type of marker or different filtering strategies did not impact estimates of population differentiation and structure. Results emphasize the importance of robust filtering strategies and designation of distance thresholds for delineating clonal lineages in population genomics analyses that depend on individual assignment and identification of clonal lineages. Detection of recurrent clonal lineages shared between the USA and Europe, even in the relaxed-filtered SNP data set and with a conservative distance threshold for contraction of MLGs, provided strong evidence for global genotype flow in C. beticola populations. The implications of intercontinental migration in C. beticola populations for CLS management are discussed.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, New York, United States of America
| | - Julie R. Kikkert
- Cornell Cooperative Extension, Canandaigua, New York, United States of America
| | - Melvin D. Bolton
- United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Red River Valley Agricultural Research Center, Fargo, North Dakota, United States of America
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Linda E. Hanson
- USDA-ARS, Sugar Beet and Bean Research Unit, Michigan State University, Michigan, United States of America
| | - Gary A. Secor
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Scot C. Nelson
- College of Tropical Agriculture and Human Resources, Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Sarah J. Pethybridge
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, New York, United States of America
| |
Collapse
|