1
|
Stanisic J, Koricanac G, Culafic T, Romic S, Stojiljkovic M, Kostic M, Ivkovic T, Tepavcevic S. Low-intensity exercise prevents cardiac inflammation through the NF-κB/TNFα pathway in insulin-resistant male rats. Mol Cell Biochem 2025:10.1007/s11010-025-05288-x. [PMID: 40244304 DOI: 10.1007/s11010-025-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Our previously published results have proven that low-intensity exercise, equivalent to brisk walking, is beneficial in managing cardiac insulin resistance in post-weaning male rats exposed to a fructose-rich diet. Still, its role in protecting against cardiac inflammation is unclear. This experiment was designed to investigate the preventive effect of low-intensity exercise on cardiac inflammation in male post-weaning rats exposed to a fructose-rich diet (10%). Male Wistar rats were randomly assigned to a sedentary control group, a sedentary group with fructose overload, and a fructose overload group subjected to treadmill exercise for nine weeks. Protein expression of cardiac inducible nitric oxide synthase (iNOS), matrix metalloproteinase 9, as well as cellular localization/phosphorylation of nuclear factor kappa B (NF-κB), and α1 and α2 subunits of sodium-potassium ATPase pump (Na/K-ATPase) was determined. Additionally, gene expression of tumor necrosis factor α (TNFα) and suppressor of cytokine signaling 3 (SOCS3) was examined. The results demonstrate that a chronic fructose-rich diet in sedentary rats elevates the expression of key inflammatory markers, including SOCS3, TNFα, NF-κB, and iNOS, as well as the plasma membrane α1 and α2 subunits. Exercise prevented alterations induced by a fructose-rich diet, except iNOS expression. Additionally, exercise increased the protein expression of the α1 and α2 subunits of Na/K-ATPase in the lysate of fructose-fed rats. These findings suggest that low-intensity exercise is an effective non-invasive strategy for cardioprotection, helping to prevent inflammation by modulating TNFα and NF-κB expression in insulin-resistant hearts of post-weaning male rats.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| |
Collapse
|
2
|
Ping X, Li Q, Ding M, Yu Z, Yi Q, Li Y, Gu W, Zhang P, Zhang Z, Zheng L. Hypoxic compound exercise improves cardiac function in Drosophila high fructose diet via KHK. J Mol Cell Cardiol 2025; 201:95-104. [PMID: 39954938 DOI: 10.1016/j.yjmcc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Overconsumption of fructose has been linked to the development of systemic metabolic and cardiac diseases, yet few studies have focused on the link between cardiac fructose metabolism and the development of heart disease. Low-oxygen complex exercise is considered an effective means of treating and preventing metabolic diseases and improving cardiac function, however, it is unclear, the link between low-oxygen complex exercise and high-fructose-induced heart disease. Therefore, the aim of this study was to investigate the effect of hypoxic complex exercise on heart disease on a high fructose diet. The results of the study found that hypoxic compound exercise improved the upregulation of inflammatory factor Upd3 and systemic fat accumulation in the heart induced by high fructose diet by inhibiting the expression of KHK gene in the heart; and it improved the impaired cardiac rhythmic function and pumping function, improved the disorder of myofilament fiber arrangement, reduced the level of cardiac oxidative stress, and reduced cardiac collagen deposition. In addition, cardiac KHK-specific knockdown had the same effect on high fructose diet hearts. Compared with single KHK cardiac-specific knockdown or hypoxic combination exercise, hypoxic combination exercise combined with KHK cardiac-specific knockdown was superior in improving the high-fructose diet-induced increase in arrhythmia index, systolic and diastolic dysfunction, and decrease in fractional shortening. Therefore, we conclude that hypoxic complex exercise improved high-fructose diet-induced cardiac rhythmic function and pumping dysfunction by reducing KHK expression.
Collapse
Affiliation(s)
- Xu Ping
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Qiufang Li
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Meng Ding
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Zhengwen Yu
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Qin Yi
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Yuepeng Li
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Wenzhi Gu
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Ping Zhang
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Zike Zhang
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Lan Zheng
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China.
| |
Collapse
|
3
|
de Miranda VHM, Dos Santos CP, Neves PP, Nascimento-Filho AV, Dutra MRH, Bernardes N, Irigoyen MC, De Angelis K. Acetylcholinesterase Inhibitor Ameliorates Early Cardiometabolic Disorders in Fructose-Overloaded Rat Offspring. Pharmaceuticals (Basel) 2024; 17:1055. [PMID: 39204159 PMCID: PMC11359402 DOI: 10.3390/ph17081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND We investigate the role of galantamine on autonomic dysfunction associated with early cardiometabolic dysfunction in the offspring of fructose-overloaded rats. METHODS Wistar rats received fructose diluted in drinking water (10%) or water for 60 days prior to mating. Fructose overload was maintained until the end of lactation. The offspring (21 days after birth) of control and fructose-overloaded animals were divided into three groups: control (C), fructose (F) and fructose + galantamine (GAL). GAL (5 mg/kg) was administered orally until the offspring were 51 days old. Metabolic, hemodynamic and cardiovascular autonomic modulation were evaluated. RESULTS The F group showed decreased insulin tolerance (KITT) compared to the C and GAL groups. The F group, in comparison to the C group, had increased arterial blood pressure, heart rate and sympathovagal balance (LF/HF ratio) and a low-frequency band of systolic arterial pressure (LF-SAP). The GAL group, in comparison to the F group, showed increased vagally mediated RMSSD index, a high-frequency band (HF-PI) and decreased LF/HF ratio and variance in SAP (VAR-SAP) and LF-SAP. Correlations were found between HF-PI and KITT (r = 0.60), heart rate (r = -0.65) and MAP (r = -0.71). CONCLUSIONS GAL treatment significantly improved cardiovascular autonomic modulation, which was associated with the amelioration of cardiometabolic dysfunction in offspring of parents exposed to chronic fructose consumption.
Collapse
Affiliation(s)
- Victor Hugo Martins de Miranda
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
| | - Camila Paixão Dos Santos
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
| | - Pietra Petrica Neves
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Antonio Viana Nascimento-Filho
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Marina Rascio Henriques Dutra
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Nathalia Bernardes
- Postgraduate Program in Physical Education, São Judas Tadeu University, Sao Paulo 03166-000, Brazil;
| | - Maria Claúdia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Kátia De Angelis
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| |
Collapse
|
4
|
Rathod S, Agrawal Y, Sherikar A, Nakhate KT, Patil CR, Nagoor Meeran MF, Ojha S, Goyal SN. Thymoquinone Produces Cardioprotective Effect in β-Receptor Stimulated Myocardial Infarcted Rats via Subsiding Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14132742. [PMID: 35807920 PMCID: PMC9268596 DOI: 10.3390/nu14132742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier studies reported that long-term treatment with thymoquinone (TQ) at a high dose (20 mg/kg) exerts a cardioprotective effect against isoproterenol (ISO)-triggered myocardial infarction (MI) in rats. In the present study, we tested the hypothesis that TQ, as a potent molecule, can exhibit cardioprotective effects at the lower dose for a short-term regimen. The rats were administered with TQ (5 mg/kg, intraperitoneal) at the 4 h interval for 2 days. ISO (100 mg/kg/day, subcutaneous) was given for 2 days to produce MI. ISO challenge results in deformation in ECG wave front, elevated left ventricular (LV) end-diastolic pressure, and reduced LVdP/dtmax and LVdP/dtmin. The levels of the cardiac biomarker in serum, such as creatine kinase MB, alanine aminotransferase, and aspartate aminotransferase, were increased. In the myocardium, a rise in malonaldehyde and decreased superoxide dismutase, glutathione, and catalase contents were observed. Furthermore, increased levels of tumor necrotic factor-α, interleukin-6, and interleukin-1β were observed in the myocardium. TQ pretreatment significantly normalized alterations in hemodynamic parameters, strengthened the antioxidant defense system, and decreased the contents of pro-inflammatory cytokines and hepatic enzymes as compared to the ISO group. Based on the results, TQ appears to be cardioprotective at low doses, and effective even administered for a shorter duration.
Collapse
Affiliation(s)
- Sumit Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Abdulla Sherikar
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.); Tel.: +971-50-3125748 (S.O.); +91-95-5291-6993 (S.N.G.)
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
- Correspondence: (S.O.); (S.N.G.); Tel.: +971-50-3125748 (S.O.); +91-95-5291-6993 (S.N.G.)
| |
Collapse
|
5
|
Dias DDS, Bernardes N, Stoyell-Conti FF, dos Santos CP, de Araujo AA, Llesuy S, Irigoyen MC, De Angelis K. Impact of combined exercise training on the development of cardiometabolic and neuroimmune complications induced by fructose consumption in hypertensive rats. PLoS One 2020; 15:e0233785. [PMID: 32521542 PMCID: PMC7286703 DOI: 10.1371/journal.pone.0233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 01/19/2023] Open
Abstract
This study evaluated the impact of combined exercise training on the development of cardiovascular and neuroimmune complications induced by fructose consumption (10% in the drinking water) in hypertensive rats (SHR). After weaning, SHR were divided into 3 groups: SHR (H), SHR+fructose (HF) and SHR+fructose+combined exercise training (treadmill+ladder, 40-60% of maximum capacity) (HFTC). Metabolic, hemodynamic, autonomic, inflammatory and oxidative stress parameters were evaluated in the subgroups (n = 6 group/time) at 7, 15, 30 and 60 days of protocol. Fructose consumption (H vs. HF groups) decreased spontaneous baroreflex sensitivity and total variance of pulse interval at day 7 (7 to 60); increased IL-6 and TNFα in the heart (at day 15, 30 and 60) and NADPH oxidase activity and cardiac lipoperoxidation (LPO) (day 60); increased white adipose tissue weight, reduced insulin sensitivity and increased triglycerides (day 60); induced an additional increase in mean arterial pressure (MAP) (days 30 and 60). Combined exercise training prevented such dysfunctions and sustained increased cardiac IL-10 (day 7) and glutathione redox balance (GSH/GSSG) for the entire protocol. In conclusion, combined exercise training performed simultaneously with exacerbated fructose consumption prevented early cardiovascular autonomic dysfunction, probably trigging positive changes in inflammation and oxidative stress, resulting in a better cardiometabolic profile in rats genetically predisposed to hypertension.
Collapse
Affiliation(s)
- Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
| | | | - Camila Paixão dos Santos
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | | | - Susana Llesuy
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Instituto Universitario Hospital Italiano, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Maria Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
6
|
Vileigas DF, Marciano CLDC, Mota GAF, de Souza SLB, Sant’Ana PG, Okoshi K, Padovani CR, Cicogna AC. Temporal Measures in Cardiac Structure and Function During the Development of Obesity Induced by Different Types of Western Diet in a Rat Model. Nutrients 2019; 12:nu12010068. [PMID: 31888029 PMCID: PMC7019835 DOI: 10.3390/nu12010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is recognized worldwide as a complex metabolic disorder that has reached epidemic proportions and is often associated with a high incidence of cardiovascular diseases. To study this pathology and evaluate cardiac function, several models of diet-induced obesity (DIO) have been developed. The Western diet (WD) is one of the most widely used models; however, variations in diet composition and time period of the experimental protocol make comparisons challenging. Thus, this study aimed to evaluate the effects of two different types of Western diet on cardiac remodeling in obese rats with sequential analyses during a long-term follow-up. Male Wistar rats were distributed into three groups fed with control diet (CD), Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. The animal nutritional profile and cardiac histology were assessed at the 41st week. Cardiac structure and function were evaluated by echocardiogram at four different moments: 17, 25, 33, and 41 weeks. A noninvasive method was performed to assess systolic blood pressure at the 33rd and 41st week. The animals fed with WD (WDF and WDS) developed pronounced obesity with an average increase of 86.5% in adiposity index at the end of the experiment. WDF and WDS groups also presented hypertension. The echocardiographic data showed no structural differences among the three groups, but WDF animals presented decreased endocardial fractional shortening and ejection fraction at the 33rd and 41st week, suggesting altered systolic function. Moreover, WDF and WFS animals did not present hypertrophy and interstitial collagen accumulation in the left ventricle. In conclusion, both WD were effective in triggering severe obesity in rats; however, only the WDF induced mild cardiac dysfunction after long-term diet exposure. Further studies are needed to search for an appropriate DIO model with relevant cardiac remodeling.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Cecília Lume de Carvalho Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu 18618970, Brazil;
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
- Correspondence: ; Tel.: +55-14-3880-1618
| |
Collapse
|
7
|
Pereira RO, Muller CR, de Nascimento NRF, Fonteles MC, Evangelista FS, Fiorino P, Farah V. Early consumption of high-fat diet worsens renal damage in spontaneously hypertensive rats in adulthood. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:258-266. [PMID: 31993100 PMCID: PMC6971500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The association between hypertension and obesity has been shown to be an important cause of kidney disease. We aimed to investigate the impact of a high-fat diet (HFD) administered in spontaneously hypertensive rats (SHR) after weaning in renal morphology and functional parameters. Male post-weaned SHR were divided into two groups: standard control diet (CD) (3% lipids; n = 8) or HFD (30% lipids; n = 8) during 8 weeks. The group HFD showed an increase in serum triglycerides (HFD: 96 ± 7 vs. CD: 33 ± 2 mg/dL) and glucose intolerance (HFD: 185 ± 7 vs. CD: 149 ± 4 mg/dL/min). Moreover, the HFD also showed an increase in almost 90% of the periepididymal and retroperitoneal adiposity. There was no difference in arterial blood pressure between groups. Renal morphofunctional parameters were decreased in HFD group for glomerular tuft area and diameter (4733 ± 65 µm2 and 82 ± 1 µm, respectively) when compared with CD group (5289 ± 171 µm2 and 88 ± 2 µm, respectively). HFD also showed a decrease of 50% of the renal function, which was associated with higher renal extracellular matrix and lipid deposition. Therefore, our data suggest that HFD since early period of life may contribute to renal damage in adults with hypertension, and this impairment can be associated with increased renal lipid accumulation.
Collapse
Affiliation(s)
- Renata Oliveira Pereira
- Translational Medicine Division, Department of Medicine, Federal University of Sao PauloSao Paulo, SP, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie Presbyterian UniversitySao Paulo, SP, Brazil
| | | | | | - Manassés Claudino Fonteles
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie Presbyterian UniversitySao Paulo, SP, Brazil
- Superior Institute of Biomedical Sciences, Ceara State UniversityFortaleza, CE, Brazil
| | | | - Patricia Fiorino
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie Presbyterian UniversitySao Paulo, SP, Brazil
| | - Vera Farah
- Translational Medicine Division, Department of Medicine, Federal University of Sao PauloSao Paulo, SP, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie Presbyterian UniversitySao Paulo, SP, Brazil
| |
Collapse
|
8
|
Motta NAV, Fumian MM, Medeiros RF, Lima GF, Scaramello CBV, Oliveira KJ, Nóbrega ACL, Brito FCF. Aerobic Training Associated with Arginine Supplementation Reduces Collagen-Induced Platelet Hyperaggregability in Rats under High Risk to Develop Metabolic Syndrome. Int J Endocrinol 2019; 2019:8919435. [PMID: 30723500 PMCID: PMC6339713 DOI: 10.1155/2019/8919435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/24/2018] [Accepted: 11/11/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increased platelet response is seen in individuals with metabolic syndrome. Previous reports have shown that arginine supplementation and aerobic exercise training enhance vascular nitric oxide (NO) activity and inhibit platelet hyperaggregability; however, the effects of their association remain unknown. AIM To investigate whether arginine supplementation and aerobic exercise association may exert beneficial effects, reducing platelet hyperaggregability in rats under high risk to develop metabolic syndrome. METHODS Wistar rats were divided into two groups: control (C) and fructose (F - water with 10% of fructose). After two weeks, the F group was subdivided into four groups: F, the same as before; fructose + arginine (FA - 880 mg/kg/day of L-arginine by gavage); fructose + training (FT); and fructose + arginine + training (FTA). Treatment lasted for eight weeks. RESULTS The fructose administration was able to increase the collagen-induced platelet aggregation (27.4 ± 2.7%) when compared to the C group (8.0 ± 3.4%). Although the arginine supplementation (32.2 ± 6.3%) or aerobic training (23.8 ± 6.5%) did not promote any change in platelet collagen-induced hyperaggregability, the association of arginine supplementation and aerobic exercise promoted an inhibition of the platelet hyperaggregability induced by fructose administration (13.9 ± 4.4%) (P < 0.05). These effects were not observed when ADP was employed as an agonist. In addition, arginine supplementation associated with aerobic exercise promoted a decrease in interleukin-6 (IL-6) and interleukin-8 (IL-8) serum levels when compared to the fructose group, demonstrating an anti-inflammatory effect. CONCLUSIONS Our data indicate an important role of arginine supplementation associated with aerobic exercise, reducing platelet hyperaggregability and inflammatory biomarker levels in rats under high risk to develop metabolic syndrome.
Collapse
Affiliation(s)
- Nadia A. V. Motta
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Milla M. Fumian
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Renata F. Medeiros
- Department of Physiology and Pharmacology, Fluminense Federal University (UFF), 24420-210 Niterói, Rio de Janeiro, Brazil
| | - Gabriel F. Lima
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Christianne B. V. Scaramello
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
- Department of Physiology and Pharmacology, Fluminense Federal University (UFF), 24420-210 Niterói, Rio de Janeiro, Brazil
| | - Karen J. Oliveira
- Department of Physiology and Pharmacology, Fluminense Federal University (UFF), 24420-210 Niterói, Rio de Janeiro, Brazil
| | - Antonio C. L. Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University (UFF), 24420-210 Niterói, Rio de Janeiro, Brazil
| | - Fernanda C. F. Brito
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
- Department of Physiology and Pharmacology, Fluminense Federal University (UFF), 24420-210 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, Mansourati J, Goanvec C. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab (Lond) 2018; 15:69. [PMID: 30305835 PMCID: PMC6171221 DOI: 10.1186/s12986-018-0307-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Metabolic Syndrom has become a public health problem. It mainly results from the increased consumption of fat and sugar. In this context, the benefits of personalized moderate exercise training were investigated on a metabolic syndrome male wistar rat model food with fructose drinking water (20–25% w/v). Different markers including body weight, metabolic measurements, blood biochemistry related to metabolic syndrome complications have been evaluated. Methods Male Wistar rats were randomly allocated to 4 groups: control (sedentary (C, n = 8) and exercise trained (Ex, n = 8)), fructose fed (sedentary (FF, n = 8) and exercise trained fructose fed rats (ExFF, n = 10)). ExFF and Ex rats were trained at moderate intensity during the last 6 weeks of the 12 weeks-long protocol of fructose enriched water. Metabolic control was determined by measuring body weight, fasting blood glucose, HOMA 2-IR, HIRI, MISI, leptin, adiponectin, triglyceridemia and hepatic dysfunction. Results After 12 weeks of fructose enriched diet, rats displayed on elevated fasting glycaemia and insulin resistance. A reduced food intake, as well as increased body weight, total calorie intake and heart weight were also observed in FF group. Concerning biochemical markers, theoretical creatinine clearance, TG levels and ASAT/ALAT ratio were also affected, without hepatic steatosis. Six weeks of 300 min/week of moderate exercise training have significantly improved overweight, fasting glycaemia, HOMA 2-IR, MISI without modify HIRI. Exercise also decreased the plasma levels of leptin, adiponectin and the ratio leptin/adiponectin. Regarding liver function and dyslipidemia, the results were less clear as the effects of exercise and fructose-enriched water interact together, and, sometimes counteract each other. Conclusion Our results indicated that positive health effects were achieved through a personalized moderate training of 300 min per week (1 h/day and 5 days/week) for 6 weeks. Therefore, regular practice of aerobic physical exercise is an essential triggering factor to attenuate MetS disorders induced by excessive fructose consumption.
Collapse
Affiliation(s)
- Julie Dupas
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Annie Feray
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Anthony Guernec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Morgane Pengam
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Manon Inizan
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - François Guerrero
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Jacques Mansourati
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,4Département de Cardiologie, Centre Hospitalo-Universitaire de Brest, Boulevard Tanguy Prigent, 29200 Brest, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Christelle Goanvec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| |
Collapse
|
10
|
Crescenzo R, Cigliano L, Mazzoli A, Cancelliere R, Carotenuto R, Tussellino M, Liverini G, Iossa S. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats. Front Physiol 2018; 9:411. [PMID: 29755364 PMCID: PMC5932594 DOI: 10.3389/fphys.2018.00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional interventions for young people and adults as well for the prevention of fructose-induced metabolic alterations.
Collapse
Affiliation(s)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Giovanna Liverini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Rivera DS, Lindsay CB, Codocedo JF, Carreño LE, Cabrera D, Arrese MA, Vio CP, Bozinovic F, Inestrosa NC. Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Mol Neurobiol 2018; 55:9169-9187. [DOI: 10.1007/s12035-018-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
|
12
|
Photobiomodulation Leads to Reduced Oxidative Stress in Rats Submitted to High-Intensity Resistive Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5763256. [PMID: 29636849 PMCID: PMC5832038 DOI: 10.1155/2018/5763256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/11/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT) in rats subjected to a high-intensity resistive exercise session (RE). Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE) and subdivided based on the sampling times (instantly or 24 h postexercise) underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J) or placebo (device off) were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers) instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.
Collapse
|
13
|
|
14
|
Motta VF, Bargut TL, Aguila MB, Mandarim-de-Lacerda CA. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle. J Appl Physiol (1985) 2017; 123:699-709. [PMID: 28495843 DOI: 10.1152/japplphysiol.00154.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Fructose-rich caloric sweeteners induce adverse changes in the metabolism of humans. The study evaluated the effects of high-intensity interval training (HIIT) on a fructose feeding model, focusing on the liver, white adipose tissue (WAT), skeletal muscle, and their interplay. Male C57BL/6 mice were fed for 18 wk one of the following diets: control (C; 5% of total energy from fructose) or fructose (F; 55% of total energy from fructose). In the 10th week, for an additional 8-wk period, the groups were divided into nontrained (NT) or HIIT groups, totaling four groups: C-NT, C-HIIT, F-NT, and F-HIIT. At the end of the experiment, fructose consumption in the F-NT group led to a high systolic blood pressure, high plasma triglycerides, insulin resistance with glucose intolerance, and lower insulin sensitivity. We also observed liver steatosis, adipocyte hypertrophy, and diminished gene expressions of peroxisome proliferator-activated receptor-γ coactivator 1-α and fibronectin type III domain containing 5 (FNDC5; irisin) in this F-NT group. These results were accompanied by decreased gene expressions of nuclear respiratory factor 1 and mitochondrial transcription factor A (markers of mitochondrial biogenesis), and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1 (markers of β-oxidation). HIIT improved all of these data in the C-HIIT and F-HIIT groups. In conclusion, in mice fed a fructose diet, HIIT improved body mass, blood pressure, glucose metabolism, and plasma triglycerides. Liver, WAT, and skeletal muscle were positively modulated by HIIT, indicating HIIT as a coadjutant treatment for diseases affecting these tissues.NEW & NOTEWORTHY We investigated the effects of high-intensity interval training (HIIT) in mice fed a fructose-rich diet and the resulting severe negative effect on the liver, white adipose tissue (WAT), and skeletal muscle, which reduced the expression of fibronectin type III domain containing 5 (FNDC5, irisin) and PGC1α and, consequently, affected markers of mitochondrial biogenesis and β-oxidation. Because HIIT may block these adverse effects in all of these three tissues, it might be suggested that it functions as a coadjutant treatment in combatting the alterations caused by high-fructose intake.
Collapse
Affiliation(s)
- Victor F Motta
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza L Bargut
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients 2017; 9:nu9040405. [PMID: 28425939 PMCID: PMC5409744 DOI: 10.3390/nu9040405] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context, the liver seems to be a key organ for understanding the deleterious health effects promoted by fructose consumption. Fructose promotes complications in glucose metabolism, accumulation of triacylglycerol in the hepatocytes, and alterations in the lipid profile, which, associated with an inflammatory response and alterations in the redox state, will imply a systemic picture of insulin resistance. However, physical exercise has been indicated for the treatment of several chronic diseases. In this review, we show how each exercise protocol (aerobic, strength, or a combination of both) promote improvements in the obesogenic state created by fructose consumption as an improvement in the serum and liver lipid profile (high-density lipoprotein (HDL) increase and decrease triglyceride (TG) and low-density lipoprotein (LDL) levels) and a reduction of markers of inflammation caused by an excess of fructose. Therefore, it is concluded that the practice of aerobic physical exercise, strength training, or a combination of both is essential for attenuating the complications developed by the consumption of fructose.
Collapse
|