1
|
Stroman PW, Staud R, Pukall CF. Evidence of a persistent altered neural state in people with fibromyalgia syndrome during functional MRI studies and its relationship with pain and anxiety. PLoS One 2025; 20:e0316672. [PMID: 39854440 PMCID: PMC11759356 DOI: 10.1371/journal.pone.0316672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/14/2024] [Indexed: 01/26/2025] Open
Abstract
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm. The analyses were supported by fMRI data from the brainstem and spinal cord in FM and HC, brain fMRI data from participants with provoked vestibulodynia (PVD), and eye-tracking data from an fMRI study of FM. The results demonstrate differences in connectivity, and in blood oxygenation-level dependent (BOLD) responses, between FM and HC. In the FM group, BOLD signals underwent a large increase during the first 40 seconds of each fMRI run, prior to the application of any stimuli, compared to much smaller increases in HC. This indicates a heightened state of neural activity in FM that is sustained during fMRI runs, and dissipates between runs. The exaggerated initial rise was not observed in PVD. Autonomic functioning differed between groups. Pupil sizes were larger in FM than in HC, and the groups exhibited pupil dilation to the same levels during noxious stimulation. The initial BOLD increase varied in relation to state and trait anxiety scores. The results indicate that people with FM enter a heightened state of neural activity associated with anxiety and autonomic functioning, during every fMRI run, concurrent with increased pupil sizes, and heightened pain sensitivity. These findings may relate to the well-known hypervigilance and global hypersensitivity of FM participants.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| | - Roland Staud
- Division of Rheumatology, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Caroline F. Pukall
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Hassanpour S, Algitami H, Umraw M, Merletti J, Keast B, Stroman PW. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sci 2024; 14:450. [PMID: 38790429 PMCID: PMC11118798 DOI: 10.3390/brainsci14050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Fibromyalgia syndrome (FM) is a chronic pain condition that affects a significant portion of the population; yet, this condition is still poorly understood. Prior research has suggested that individuals with FM display a heightened sensitivity to pain and signs of autonomic dysfunction. Recent advances in functional MRI analysis methods to model blood-oxygenation-level-dependent (BOLD) responses across networks of regions, and structural and physiological modeling (SAPM) have shown the potential to provide more detailed information about altered neural activity than was previously possible. Therefore, this study aimed to apply novel analysis methods to investigate altered neural processes underlying pain sensitivity in FM in functional magnetic resonance imaging (fMRI) data from the brainstem and spinal cord. Prior fMRI studies have shown evidence of functional differences in fibromyalgia (FM) within brain regions associated with pain's motivational aspects, as well as differences in neural activity related to pain regulation, arousal, and autonomic homeostatic regulation within the brainstem and spinal cord regions. We, therefore, hypothesized that nociceptive processing is altered in FM compared to healthy controls (HCs) in the brainstem and spinal cord areas linked to autonomic function and descending pain regulation, including the parabrachial nuclei (PBN) and nucleus tractus solitarius (NTS). We expected that new details of this altered neural signaling would be revealed with SAPM. The results provide new evidence of altered neural signaling in FM related to arousal and autonomic homeostatic regulation. This further advances our understanding of the altered neural processing that occurs in women with FM.
Collapse
Affiliation(s)
- Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Staud R, Godfrey MM, Stroman PW. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: evidence from QST trials and spinal fMRI. FRONTIERS IN PAIN RESEARCH 2023; 4:1284103. [PMID: 38116188 PMCID: PMC10728773 DOI: 10.3389/fpain.2023.1284103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Melyssa M. Godfrey
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
4
|
Stroman PW, Umraw M, Keast B, Algitami H, Hassanpour S, Merletti J. Structural and Physiological Modeling (SAPM) for the Analysis of Functional MRI Data Applied to a Study of Human Nociceptive Processing. Brain Sci 2023; 13:1568. [PMID: 38002528 PMCID: PMC10669617 DOI: 10.3390/brainsci13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel method has been developed for analyzing connectivity between regions based on functional magnetic resonance imaging (fMRI) data. This method, termed structural and physiological modeling (SAPM), combines information about blood oxygenation-level dependent (BOLD) responses, anatomy, and physiology to model coordinated signaling across networks of regions, including input and output signaling from each region and whether signaling is predominantly inhibitory or excitatory. The present study builds on a prior proof-of-concept demonstration of the SAPM method by providing evidence for the choice of network model and anatomical sub-regions, demonstrating the reproducibility of the results and identifying statistical thresholds needed to infer significance. The method is further validated by applying it to investigate human nociceptive processing in the brainstem and spinal cord and comparing the results to the known neuroanatomy, including anatomical regions and inhibitory and excitatory signaling. The results of this analysis demonstrate that it is possible to obtain reliable information about input and output signaling from anatomical regions and to identify whether this signaling has predominantly inhibitory or excitatory effects. SAPM provides much more detailed information about neuroanatomy than was previously possible based on fMRI data.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| |
Collapse
|
5
|
Haynes G, Muhammad F, Khan AF, Mohammadi E, Smith ZA, Ding L. The current state of spinal cord functional magnetic resonance imaging and its application in clinical research. J Neuroimaging 2023; 33:877-888. [PMID: 37740582 DOI: 10.1111/jon.13158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Since its development, spinal cord functional magnetic resonance imaging (fMRI) has utilized various methodologies and stimulation protocols to develop a deeper understanding of a healthy human spinal cord that lays a foundation for its use in clinical research and practice. In this review, we conducted a comprehensive literature search on spinal cord fMRI studies and summarized the recent advancements and resulting scientific achievements of spinal cord fMRI in the following three aspects: the current state of spinal cord fMRI methodologies and stimulation protocols, knowledge about the healthy spinal cord's functions obtained via spinal cord fMRI, and fMRI's exemplary usage in spinal cord diseases and injuries. We conclude with a discussion that, while technical challenges exist, novel fMRI technologies for and new knowledge about the healthy human spinal cord have been established. Empowered by these developments, investigations of pathological and injury states within the spinal cord have become the next important direction of spinal cord fMRI. Recent clinical investigations into spinal cord pathologies, for example, fibromyalgia, multiple sclerosis, spinal cord injury, and cervical spondylotic myelopathy, have already provided deep insights into spinal cord impairments and the time course of impairment-caused changes. We expect that future spinal cord fMRI advancement and research development will further enhance our understanding of various spinal cord diseases and provide the foundation for evaluating existing and developing new treatment plans.
Collapse
Affiliation(s)
- Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Distinct neural signaling characteristics between fibromyalgia and provoked vestibulodynia revealed by means of functional magnetic resonance imaging in the brainstem and spinal cord. FRONTIERS IN PAIN RESEARCH 2023; 4:1171160. [PMID: 37283704 PMCID: PMC10240076 DOI: 10.3389/fpain.2023.1171160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Fibromyalgia and provoked vestibulodynia are two chronic pain conditions that disproportionately affect women. The mechanisms underlying the pain in these conditions are still poorly understood, but there is speculation that both may be linked to altered central sensitization and autonomic regulation. Neuroimaging studies of these conditions focusing on the brainstem and spinal cord to explore changes in pain regulation and autonomic regulation are emerging, but none to date have directly compared pain and autonomic regulation in these conditions. This study compares groups of women with fibromyalgia and provoked vestibulodynia to healthy controls using a threat/safety paradigm with a predictable noxious heat stimulus. Methods Functional magnetic resonance imaging data were acquired at 3 tesla in the cervical spinal cord and brainstem with previously established methods. Imaging data were analyzed with structural equation modeling and ANCOVA methods during: a period of noxious stimulation, and a period before the stimulation when participants were expecting the upcoming pain. Results The results demonstrate several similarities and differences between brainstem/spinal cord connectivity related to autonomic and pain regulatory networks across the three groups in both time periods. Discussion Based on the regions and connections involved in the differences, the altered pain processing in fibromyalgia appears to be related to changes in how autonomic and pain regulation networks are integrated, whereas altered pain processing in provoked vestibulodynia is linked in part to changes in arousal or salience networks as well as changes in affective components of pain regulation.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | | | - Jocelyn M. Powers
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Roland Staud
- Department of Medicine, University of Florida, Gainseville, FL, United States
| | - Caroline F. Pukall
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Psychology, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen's University, Kingston, ON, Canada
| |
Collapse
|
7
|
Koning E, Powers JM, Ioachim G, Stroman PW. A Comparison of Functional Connectivity in the Human Brainstem and Spinal Cord Associated with Noxious and Innocuous Thermal Stimulation Identified by Means of Functional MRI. Brain Sci 2023; 13:brainsci13050777. [PMID: 37239249 DOI: 10.3390/brainsci13050777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The somatosensory system is multidimensional and processes important information for survival, including the experience of pain. The brainstem and spinal cord serve pivotal roles in both transmitting and modulating pain signals from the periphery; although, they are studied less frequently with neuroimaging when compared to the brain. In addition, imaging studies of pain often lack a sensory control condition, failing to differentiate the neural processes associated with pain versus innocuous sensations. The purpose of this study was to investigate neural connectivity between key regions involved in descending modulation of pain in response to a hot, noxious stimulus as compared to a warm, innocuous stimulus. This was achieved with functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in 20 healthy men and women. Functional connectivity was observed to vary between specific regions across painful and innocuous conditions. However, the same variations were not observed in the period of anticipation prior to the onset of stimulation. Specific connections varied with individual pain scores only during the noxious stimulation condition, indicating a significant role of individual differences in the experience of pain which are distinct from that of innocuous sensation. The results also illustrate significant differences in descending modulation before and during stimulation in both conditions. These findings contribute to a deeper understanding of the mechanisms underlying pain processing at the level of the brainstem and spinal cord, and how pain is modulated.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Stroman PW, Powers JM, Ioachim G. Proof-of-concept of a novel structural equation modelling approach for the analysis of functional magnetic resonance imaging data applied to investigate individual differences in human pain responses. Hum Brain Mapp 2023; 44:2523-2542. [PMID: 36773275 PMCID: PMC10028631 DOI: 10.1002/hbm.26228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
A novel network analysis method is demonstrated for applications with functional magnetic resonance imaging (fMRI) data. The method is based on structural equation modeling (SEM) plus modeling of physiological responses in order to explain blood oxygenation-level dependent (BOLD) responses across interconnected regions. The method, termed structural and physiological modeling (SAPM) aims to overcome a weakness of previous analysis methods by estimating both input and output signaling of every region of a network. The results also provide weighting factors (B) which describe the influence of each input signal to a region on its output signaling to another region. The SAPM method is demonstrated by applying it to fMRI data from the brainstem and spinal cord in 55 healthy participants undergoing repeated applications of a heat pain stimulation paradigm. Data are also analyzed using our established SEM method for comparison. The results with both methods indicate that individual differences in nociceptive processing are mediated by differences in descending regulation of spinal cord neurons under the influence of both the nucleus tractus solitarius and periaqueductal gray region. The SAPM results show that BOLD responses in the entire network can be explained during all periods of the stimulation paradigm based on two latent (unobserved) input signaling sources, and a model of the predicted BOLD responses to the heat stimulus. The results demonstrate the concept of our novel SAPM method and provide evidence for its validity. Additional studies are needed to further develop the method and its applications to investigations of complex neural processes across networks.
Collapse
Affiliation(s)
- Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Traumatic Life Experience and Pain Sensitization: Meta-analysis of Laboratory Findings. Clin J Pain 2023; 39:15-28. [PMID: 36524769 DOI: 10.1097/ajp.0000000000001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Psychological trauma often co-occurs with pain. This relationship has been explored using laboratory pain measures; however, findings have been mixed. Previous studies have limited operationalization of trauma (eg, posttraumatic stress disorder) or pain (eg, pain thresholds), which may contribute to conflicting results. Further, prior reviews likely underrepresent trauma experiences among people who are not receiving clinical care, limiting generalizability. MATERIALS AND METHODS We systematically reviewed the existing literature on the relationship between psychological trauma (eg, car accidents, sexual assault, childhood abuse, neglect) and laboratory pain (ie, quantitative sensory testing measures of pain threshold, intensity, summation, modulation), using inclusive criteria. The direction of the relationship between psychological trauma and pain sensitivity was evaluated, and moderation by purported pain mechanism (ie, pain detection, suprathreshold pain, central sensitization, inhibition) was explored. RESULTS Analyses were conducted using 48 studies that provided 147 effect sizes. A multivariate random-effects model with robust variance estimation resulted in a small but statistically significant overall effect size of g=0.24 (P=0.0002), reflecting a positive association between psychological trauma and enhanced laboratory pain sensitivity. Upon examination of mechanistic moderators, this relationship appears driven by effects on pain detection (g=0.28, P=0.002) and central sensitization (g=0.22, P=0.04). While effect sizes were similar across all moderators, effects on suprathreshold pain and inhibition were not statistically significant. DISCUSSION Findings demonstrate an overall pattern of trauma-related pain enhancement and point to central sensitization as a key underlying mechanism.
Collapse
|
10
|
Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front Neurol 2022; 13:862976. [PMID: 35599729 PMCID: PMC9120571 DOI: 10.3389/fneur.2022.862976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord. Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling. The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | - Jocelyn M. Powers
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Roland Staud
- Department of Medicine, University of Florida, Seffner, FL, United States
| | - Caroline F. Pukall
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Physics, Queen's University, Kingston, ON, Canada
- *Correspondence: Patrick W. Stroman
| |
Collapse
|
11
|
Staud R, Boissoneault J, Lai S, Mejia MS, Ramanlal R, Godfrey MM, Stroman PW. Spinal cord neural activity of patients with fibromyalgia and healthy controls during temporal summation of pain: an fMRI study. J Neurophysiol 2021; 126:946-956. [PMID: 34406893 DOI: 10.1152/jn.00276.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cause for the increased sensitivity of patients with fibromyalgia (FM) to painful stimuli is unclear but sensitization of dorsal horn spinal cord neurons has been suggested. There, critical changes of sensory information occur which depend on the plasticity of second-order neurons and descending pain modulation, including facilitation and inhibition. This study used repetitive stimuli that produce temporal-summation-of-second-pain (TSSP) and central sensitization, relevant mechanisms for patients with chronic pain. We examined spinal cord neural activation during TSSP in patients with FM and healthy controls (HC) and used its functional connectivity with several brainstem nuclei to model the observed blood-oxygen-level-dependent (BOLD) time-course with pain ratings. Sixteen HC and 14 FM participants received repetitive heat stimuli to the hand at 0.4 Hz to achieve TSSP during functional imaging with a 3 T-Philips Achieva MRI scanner. Stimuli were adjusted to each individual's pain sensitivity to achieve maximal pain ratings of 50 ± 10 on a numerical pain scale (0-100). Using a 16-channel neurovascular coil, multiple image series were obtained from the cervical spinal cord to the brainstem using single-shot turbo-spin echo sequences. During repetitive, sensitivity-adjusted heat stimuli, pain ratings of all subjects increased as predicted, consistent with TSSP. HC and FM participants had similar temporal patterns of spinal activation: initial BOLD increase followed by deactivation. Structural equation modeling showed that the observed spinal activity during TSSP was associated with more BOLD activity across/within the brainstem in FM subjects than HC, suggesting differences in pain modulation.NEW & NOTEWORTHY "Windup" and its behavioral correlate "temporal-summation-of-second pain" (TSSP) represent spinal cord mechanisms of pain augmentation associated with central sensitization and chronic pain. Fibromyalgia (FM) is a chronic pain disorder, where abnormal TSSP has been demonstrated. We used fMRI to study spinal cord and brainstem activation during TSSP. We characterized the time course of spinal cord and brainstem BOLD activity during TSSP which showed abnormal brainstem activity in patients with FM, possibly due to deficient pain modulation.
Collapse
Affiliation(s)
- Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Song Lai
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Marlin S Mejia
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Riddhi Ramanlal
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Patrick W Stroman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Yessick LR, Pukall CF, Ioachim G, Chamberlain SM, Stroman PW. An Investigation of Descending Pain Modulation in Women With Provoked Vestibulodynia (PVD): Alterations of Spinal Cord and Brainstem Connectivity. FRONTIERS IN PAIN RESEARCH 2021; 2:682483. [PMID: 35295532 PMCID: PMC8915748 DOI: 10.3389/fpain.2021.682483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
The most common subtype of vulvodynia (idiopathic chronic vulvar pain) is provoked vestibulodynia (PVD). Previous imaging studies have shown that women with vulvodynia exhibit increased neural activity in pain-related brain regions (e.g., the secondary somatosensory cortex, insula, dorsal midcingulate, posterior cingulate, and thalamus). However, despite the recognized role of the spinal cord/brainstem in pain modulation, no previous neuroimaging studies of vulvodynia have examined the spinal cord/brainstem. Sixteen women with PVD and sixteen matched Control women underwent a spinal cord/brainstem functional magnetic resonance imaging (fMRI) session consisting of five runs with no painful thermal stimuli (No Pain), interleaved randomly with five runs with calibrated, moderately painful heat stimulation (Pain). Functional connectivity was also assessed in periods before, during, and after, pain stimulation to investigate dynamic variations in pain processing throughout the stimulation paradigm. Functional connectivity in the brainstem and spinal cord for each group was examined using structural equation modeling (SEM) for both Pain and No Pain conditions. Significant connectivity differences during stimulation were identified between PVD and Control groups within pain modulatory regions. Comparisons of Pain and No Pain conditions identified a larger number of connections in the Control group than in the PVD group, both before and during stimulation. The results suggest that women with PVD exhibit altered pain processing and indicate an insufficient response of the pain modulation system. This study is the first to examine the spinal cord/brainstem functional connectivity in women with PVD, and it demonstrates altered connectivity related to pain modulation in the spinal cord/brainstem.
Collapse
Affiliation(s)
| | - Caroline F. Pukall
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan M. Chamberlain
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Stroman PW, Powers JM, Ioachim G, Warren HJM, McNeil K. Investigation of the neural basis of expectation-based analgesia in the human brainstem and spinal cord by means of functional magnetic resonance imaging. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100068. [PMID: 34381928 PMCID: PMC8333346 DOI: 10.1016/j.ynpai.2021.100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Expectation of lower pain results in lower perceived pain in healthy humans. This expectation analgesia is mediated by descending regulation of the spinal cord. Connectivity analyses showed effects of expecting lower pain prior to stimulation. Expectation analgesia involves regions linked to arousal and autonomic regulation.
Purpose The expected intensity of pain resulting from a noxious stimulus has been observed to have a strong influence on the pain that is perceived. The neural basis of pain reduction, as a result of expecting lower pain, was investigated using functional magnetic resonance imaging (fMRI) in the brainstem and spinal cord. Methods Functional MRI studies were carried out in a region spanning the brainstem and cervical spinal cord in healthy participants. Participants were familiarized with a noxious heat stimulus and study procedures in advance, and were informed during each trial that either a heat calibrated to produce moderate pain (Base state), or a temperature 1 °C lower (Low state), would be applied to their hand. However, the Base temperature was applied in every trial. Results Pain ratings were significantly reduced as a result of expecting lower temperatures. FMRI results demonstrate blood oxygenation-level dependent (BOLD) signal variations in response to participants being informed of the stimulus to expect, in advance of stimulation, and in response to stimulation. Significant coordination of BOLD signals was also detected across specific brainstem and spinal cord regions, with connectivity strengths that varied significantly with the study condition, and with individual pain ratings. The results identify regions that are known to be involved with arousal and autonomic regulation. Conclusions Expectation-based analgesia is mediated by descending regulation of spinal cord nociceptive responses. This regulation appears to be related to arousal and autonomic regulation, consistent with the cognitive/affective dimension of pain.
Collapse
Affiliation(s)
- P W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Physics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - G Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - H J M Warren
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - K McNeil
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Royal Military College of Canada, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Warren HJM, Ioachim G, Powers JM, Stroman PW. How fMRI Analysis Using Structural Equation Modeling Techniques Can Improve Our Understanding of Pain Processing in Fibromyalgia. J Pain Res 2021; 14:381-398. [PMID: 33603453 PMCID: PMC7882802 DOI: 10.2147/jpr.s290795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the utility of data-driven analyses of functional magnetic resonance imaging (fMRI) data, by means of structural equation modeling, for the investigation of pain processing in fibromyalgia (FM). PATIENTS AND METHODS Datasets from two separate pain fMRI studies involving healthy controls (HC) and participants with FM were re-analyzed using both a conventional model-driven approach and a data-driven approach, and the results from these analyses were compared. The first dataset contained 15 women with FM and 15 women as healthy controls. The second dataset contained 15 women with FM and 11 women as healthy controls. RESULTS Consistent with previous studies, the model-driven analyses did not identify differences in pain processing between the HC and FM study groups in both datasets. On the other hand, the data-driven analyses identified significant group differences in both datasets. CONCLUSION Data-driven analyses can enhance our understanding of pain processing in healthy controls and in clinical populations by identifying activity associated with pain processing specific to the clinical groups that conventional model-driven analyses may miss.
Collapse
Affiliation(s)
- Howard J M Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Stroman PW, Warren HJM, Ioachim G, Powers JM, McNeil K. A comparison of the effectiveness of functional MRI analysis methods for pain research: The new normal. PLoS One 2020; 15:e0243723. [PMID: 33315886 PMCID: PMC7735591 DOI: 10.1371/journal.pone.0243723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Studies of the neural basis of human pain processing present many challenges because of the subjective and variable nature of pain, and the inaccessibility of the central nervous system. Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), have provided the ability to investigate these neural processes, and yet commonly used analysis methods may not be optimally adapted for studies of pain. Here we present a comparison of model-driven and data-driven analysis methods, specifically for the study of human pain processing. Methods are tested using data from healthy control participants in two previous studies, with separate data sets spanning the brain, and the brainstem and spinal cord. Data are analyzed by fitting time-series responses to predicted BOLD responses in order to identify significantly responding regions (model-driven), as well as with connectivity analyses (data-driven) based on temporal correlations between responses in spatially separated regions, and with connectivity analyses based on structural equation modeling, allowing for multiple source regions to explain the signal variations in each target region. The results are assessed in terms of the amount of signal variance that can be explained in each region, and in terms of the regions and connections that are identified as having BOLD responses of interest. The characteristics of BOLD responses in identified regions are also investigated. The results demonstrate that data-driven approaches are more effective than model-driven approaches for fMRI studies of pain.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Howard J. M. Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Kaitlin McNeil
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Barry RL, Conrad BN, Maki S, Watchmaker JM, McKeithan LJ, Box BA, Weinberg QR, Smith SA, Gore JC. Multi-shot acquisitions for stimulus-evoked spinal cord BOLD fMRI. Magn Reson Med 2020; 85:2016-2026. [PMID: 33169877 DOI: 10.1002/mrm.28570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate the feasibility of 3D multi-shot magnetic resonance imaging acquisitions for stimulus-evoked blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in the human spinal cord in vivo. METHODS Two fMRI studies were performed at 3T. The first study was a hypercapnic gas challenge where data were acquired from healthy volunteers using a multi-shot 3D fast field echo (FFE) sequence as well as single-shot multi-slice echo-planar imaging (EPI). In the second study, another cohort of healthy volunteers performed an upper extremity motor task while fMRI data were acquired using a 3D multi-shot acquisition. RESULTS Both 2D-EPI and 3D-FFE were shown to be sensitive to BOLD signal changes in the cervical spinal cord, and had comparable contrast-to-noise ratios in gray matter. FFE exhibited much less signal drop-out and weaker geometric distortions compared to EPI. In the motor paradigm study, the mean number of active voxels was highest in the ventral gray matter horns ipsilateral to the side of the task and at the spinal level associated with innervation of finger extensors. CONCLUSIONS Highly multi-shot acquisition sequences such as 3D-FFE are well suited for stimulus-evoked spinal cord BOLD fMRI.
Collapse
Affiliation(s)
- Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Benjamin N Conrad
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Satoshi Maki
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Watchmaker
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lydia J McKeithan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn R Weinberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Ioachim G, Powers JM, Warren HJM, Stroman PW. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sci 2020; 10:brainsci10090568. [PMID: 32824896 PMCID: PMC7565010 DOI: 10.3390/brainsci10090568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) research on the human brainstem (BS) and spinal cord (SC) has identified extensive BS/SC resting-state networks (RSNs) by showing spontaneous coordinated blood oxygenation-level dependent (BOLD) signal fluctuations in the absence of a stimulus. Studies have shown that these networks can be influenced by participants’ level of arousal or attention (e.g., watching a video), and linked network function to autonomic homeostatic regulation. Here we explore how the cognitive state of expecting pain can influence connectivity in these networks. Data from two studies (a predictable pain stimulus study, and a resting-state study) were compared to show the effects of expecting pain on BS/SC networks, and how networks differed from networks associated with the resting-state. In each study, BOLD fMRI data were obtained from the cervical SC and brainstem in healthy participants at 3 tesla using a T2-weighted single-shot fast spin-echo imaging method. Functional connectivity was investigated within the entire 3D volume by means of structural equation modeling (SEM) and analyses of covariance (ANCOVA). Results showed extensive connectivity within/across BS and SC regions during the expectation of pain, and ANCOVA analyses showed that connectivity in specific components of these networks varied with individual pain sensitivity. Comparing these results to RSN fluctuations revealed commonalities in coordination between BS and SC regions, and specific BS–BS connectivity fluctuations unique to the expectation of pain. Based on the regions involved, these results provide evidence of brainstem regulation specific to the expectation of pain.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Howard J. M. Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: ; Tel.: +1-613-533-3245
| |
Collapse
|
19
|
Imbe H, Kimura A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res 2020; 1735:146758. [PMID: 32135148 DOI: 10.1016/j.brainres.2020.146758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The subcortical areas such as medial preoptic area (MPO), dorsomedial nucleus of the hypothalamus (DMH), basolateral (BLA) and central nuclei of the amygdala (CeA), and the cortical areas such as insular (IC) and anterior cingulate cortices (ACC) play an important role in pain control via the descending pain modulatory system. In the present study we examined the expression of phosphorylated -cAMP-response element binding protein (pCREB) and the acetylation of histone H3 in these subcortical and cortical areas after repeated restraint stress to reveal changes in the subcortical and cortical areas that affect the function of descending pain modulatory system in the rats with SIH. The repeated restraint stress for 3 weeks induced a decrease in mechanical threshold in the rat hindpaw, an increase in the expression of pCREB in the MPO and an increase in the acetylation of histone H3 in the MPO, BLA and IC. The MPO was the only area that showed an increase in both the expression of pCREB and the acetylation of histone H3 among these examined areas after the repeated restraint stress. Furthermore, the number of pCREB-IR or acetylated histone H3-IR cells in the MPO was negatively correlated with the mechanical threshold. Together, our data represent the importance of the MPO among the subcortical and cortical areas that control descending pain modulatory system under the condition of SIH.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
20
|
Cadotte DW, Akbar MA, Fehlings MG, Stroman PW, Cohen-Adad J. What Has Been Learned from Magnetic Resonance Imaging Examination of the Injured Human Spinal Cord: A Canadian Perspective. J Neurotrauma 2019; 35:1942-1957. [PMID: 30074873 DOI: 10.1089/neu.2018.5903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) has transformed the way surgeons and researchers study and treat spinal cord injury. In this narrative review, we explore the historical context of imaging the human spinal cord and describe how MRI has evolved from providing the first visualization of the human spinal cord in the 1980s to a remarkable set of imaging tools today. The article focuses in particular on the role of Canadian researchers to this field. We begin by outlining the clinical context of traumatic injury to the human spinal cord and describe why current MRI standards fall short when it comes to treating this disabling condition. Parts 2 and 3 of this work explore an exciting and dramatic shift in the use of MRI technology to aid in our understanding and treatment of traumatic injury to the spinal cord. We explore the use of functional imaging (part 2) and structural imaging (part 3) and explore how these techniques have evolved, how they are used, and the challenges that we face for continued refinement and application to patients who live with the neurological and functional deficits caused by injury to the delicate spinal cord.
Collapse
Affiliation(s)
- David W Cadotte
- 1 University of Calgary Spine Program, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary , Foothills Medical Centre, Calgary, Alberta, Canada
| | - M Ali Akbar
- 2 Department of Surgery, Division of Neurosurgery and Spinal Program, Toronto Western Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 2 Department of Surgery, Division of Neurosurgery and Spinal Program, Toronto Western Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Patrick W Stroman
- 3 Centre for Neuroscience Studies, Queens University , Kingston, Ontario, Canada
| | - Julien Cohen-Adad
- 4 NeuroPoly Lab, Institute of Biomedical Engineering , Polytechnique Montreal, Montreal, Quebéc, Canada .,5 Functional Neuroimaging Unit, CRIUGM, Université de Montréal , Montreal, Quebéc, Canada
| |
Collapse
|
21
|
Abstract
OBJECTIVE This study investigated whether childhood adversity would be associated with hypersensitivity on two measures of central pain facilitation: area of secondary allodynia and temporal summation of second pain (TSSP), and whether pain facilitation would be explained by adult posttraumatic stress disorder (PTSD) symptoms. METHOD Participants endorsing high (n = 31) and low (n = 31) childhood adversity underwent capsaicin-induced secondary allodynia and TSSP testing. The tests were conducted a week apart with test order counterbalanced. RESULTS Larger areas of secondary allodynia were observed in the high adversity group compared with the low adversity group (F(1,60) = 4.81, p = .032). This group difference was largely (62%) explained by greater PTSD symptoms in the high adversity group. Although no overall difference was found in TSSP slopes (p = .886), this was attributed to an order by group interaction (F(1,58) = 5.07, p = .028) and low power. Subsequent analyses revealed positive TSSP slopes in the high adversity group when TSSP testing was performed first, and this order effect was associated with blunted sympathetic responses to TSSP on the first visit. The two facilitation measures were unrelated (p = .631). CONCLUSIONS Larger areas of secondary allodynia were observed in the high adversity group, which was explained largely by PTSD symptoms. This suggests that adversity-related changes in pain facilitation may underlie the association between childhood adversity and generalized widespread pain. Although TSSP was affected by previous testing, adversity-related pain facilitation was observed when TSSP testing occurred first. Finally, adversity was not associated with a consistent pattern of hypersensitivity across the two measures of central pain facilitation.
Collapse
|
22
|
Neuroimaging of Pain: Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation. Anesthesiology 2019; 128:1241-1254. [PMID: 29494401 DOI: 10.1097/aln.0000000000002137] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroimaging research has demonstrated definitive involvement of the central nervous system in the development, maintenance, and experience of chronic pain. Structural and functional neuroimaging has helped elucidate central nervous system contributors to chronic pain in humans. Neuroimaging of pain has provided a tool for increasing our understanding of how pharmacologic and psychologic therapies improve chronic pain. To date, findings from neuroimaging pain research have benefitted clinical practice by providing clinicians with an educational framework to discuss the biopsychosocial nature of pain with patients. Future advances in neuroimaging-based therapeutics (e.g., transcranial magnetic stimulation, real-time functional magnetic resonance imaging neurofeedback) may provide additional benefits for clinical practice. In the future, with standardization and validation, brain imaging could provide objective biomarkers of chronic pain, and guide treatment for personalized pain management. Similarly, brain-based biomarkers may provide an additional predictor of perioperative prognoses.
Collapse
|
23
|
Ioachim G, Powers JM, Stroman PW. Comparing Coordinated Networks Across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State. Brain Connect 2019; 9:415-424. [DOI: 10.1089/brain.2018.0659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
- Department of Biomedical and Molecular Sciences and Queen's University, Kingston, Canada
- Department of Physics, Queen's University, Kingston, Canada
| |
Collapse
|
24
|
Investigation of Resting-State BOLD Networks in the Human Brainstem and Spinal Cord. Neuroscience 2019; 404:71-81. [DOI: 10.1016/j.neuroscience.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
|
25
|
Powers JM, Ioachim G, Stroman PW. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci 2018; 8:E173. [PMID: 30201938 PMCID: PMC6162663 DOI: 10.3390/brainsci8090173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
A comprehensive review of the literature-to-date on functional magnetic resonance imaging (fMRI) of the spinal cord is presented. Spinal fMRI has been shown, over more than two decades of work, to be a reliable tool for detecting neural activity. We discuss 10 key points regarding the history, development, methods, and applications of spinal fMRI. Animal models have served a key purpose for the development of spinal fMRI protocols and for experimental spinal cord injury studies. Applications of spinal fMRI span from animal models across healthy and patient populations in humans using both task-based and resting-state paradigms. The literature also demonstrates clear trends in study design and acquisition methods, as the majority of studies follow a task-based, block design paradigm, and utilize variations of single-shot fast spin-echo imaging methods. We, therefore, discuss the similarities and differences of these to resting-state fMRI and gradient-echo EPI protocols. Although it is newly emerging, complex connectivity and network analysis is not only possible, but has also been shown to be reliable and reproducible in the spinal cord for both task-based and resting-state studies. Despite the technical challenges associated with spinal fMRI, this review identifies reliable solutions that have been developed to overcome these challenges.
Collapse
Affiliation(s)
- Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
26
|
Paquette T, Jeffrey-Gauthier R, Leblond H, PichÉ M. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Anat Rec (Hoboken) 2018; 301:1585-1595. [PMID: 29752872 DOI: 10.1002/ar.23854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in the brain and spinal cord are tightly linked and interrelated. The objective of this topical review is to discuss work on neurovascular coupling during nociceptive processing in order to highlight supporting evidence and limitations for the use of cerebral and spinal fMRI to investigate pain mechanisms and spinal nociceptive processes. Work on functional neuroimaging of pain is presented and discussed in relation to available neurovascular coupling studies and related issues. Perspectives on future work are also discussed with an emphasis on differences between the brain and the spinal cord and on different approaches that may be useful to improve current methods, data analyses and interpretation. In summary, this review highlights the lack of data on neurovascular coupling during nociceptive stimulation and indicates that hemodynamic and BOLD responses measured with fMRI may be biased by nonspecific vascular changes. Future neuroimaging studies on nociceptive and pain-related processes would gain further understanding of neurovascular coupling in the brain and spinal cord and should take into account the effects of systemic vascular changes that may affect hemodynamic responses. Anat Rec, 301:1585-1595, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Renaud Jeffrey-Gauthier
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu PichÉ
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
27
|
Oladosu FA, Tu FF, Farhan S, Garrison EF, Steiner ND, Roth GE, Hellman KM. Abdominal skeletal muscle activity precedes spontaneous menstrual cramping pain in primary dysmenorrhea. Am J Obstet Gynecol 2018; 219:91.e1-91.e7. [PMID: 29733841 DOI: 10.1016/j.ajog.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dysmenorrhea is a pervasive pain condition that affects 20-50% of reproductive-aged women. Distension of a visceral organ, such as the uterus, could elicit a visceromotor reflex, resulting in involuntary skeletal muscle activity and referred pain. Although referred abdominal pain mechanisms can contribute to visceral pain, the role of abdominal muscle activity has not yet been investigated within the context of menstrual pain. OBJECTIVE The goal of this study was to determine whether involuntary abdominal muscle activity precedes spontaneous episodes of menstrual cramping pain in dysmenorrheic women and whether naproxen administration affects abdominal muscle activity. STUDY DESIGN Abdominal electromyography activity was recorded from women with severe dysmenorrhea (n = 38) and healthy controls (n = 10) during menses. Simultaneously, pain was measured in real time using a squeeze bulb or visual analog rheostat. Ninety minutes after naproxen administration, abdominal electromyography activity and menstrual pain were reassessed. As an additional control, women were also recorded off menses, and data were analyzed in relation to random bulb squeezes. Because it is unknown whether mechanisms of menstrual cramps are different in primary or secondary dysmenorrhea/chronic pelvic pain, the relationship between medical history and abdominal muscle activity was examined. To further examine differences in nociceptive mechanisms, pressure pain thresholds were also measured to evaluate changes in widespread pain sensitivity. RESULTS Abdominal muscle activity related to random-bulb squeezing was rarely observed in healthy controls on menses (0.9 ± 0.6 episodes/hour) and in dysmenorrhea participants off menses (2.3 ± 0.6 episodes/hour). In dysmenorrheic participants during menses, abdominal muscle activity frequently preceded bulb squeezing indicative of menstrual cramping pain (10.8 ± 3.0 episodes/hour; P < .004). Whereas 45% of the women with dysmenorrhea (17 of 38) had episodes of abdominal muscle activity associated pain, only 13% (5 of 38) had episodes after naproxen (P = .011). Women with the abdominal muscle activity-associated pain were less likely to have a diagnosis for secondary dysmenorrhea or chronic pelvic pain (2 of 17) than women without this pain phenotype (10 of 21; P = .034). Similarly, women with the abdominal muscle activity-associated pain phenotype had less nonmenstrual pain days per month (0.6 ± 0.5) than women without the phenotype (12.4 ± 0.3; P = .002). Women with abdominal muscle activity-associated pain had pressure pain thresholds (22.4 ± 3.0 N) comparable with healthy controls (22.2 ± 3.0 N; P = .967). In contrast, women without abdominal muscle activity-associated pain had lower pressure pain thresholds (16.1 ± 1.9 N; P = .039). CONCLUSION Abdominal muscle activity may contribute to cramping pain in primary dysmenorrhea but is resolvable with naproxen. Dysmenorrheic patients without cramp-associated abdominal muscle activity exhibit widespread pain sensitivity (lower pressure pain thresholds) and are more likely to also have a chronic pain diagnosis, suggesting their cramps are linked to changes in central pain processes. This preliminary study suggests new tools to phenotype menstrual pain and supports the hypothesis that multiple distinct mechanisms may contribute to dysmenorrhea.
Collapse
Affiliation(s)
- Folabomi A Oladosu
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem and Pritzker School of Medicine, University of Chicago, Evanston IL
| | - Frank F Tu
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem and Pritzker School of Medicine, University of Chicago, Evanston IL
| | - Saaniya Farhan
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston IL
| | - Ellen F Garrison
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston IL
| | - Nicole D Steiner
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston IL
| | - Genevieve E Roth
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston IL
| | - Kevin M Hellman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem and Pritzker School of Medicine, University of Chicago, Evanston IL.
| |
Collapse
|
28
|
Pain processing in the human brainstem and spinal cord before, during, and after the application of noxious heat stimuli. Pain 2018; 159:2012-2020. [DOI: 10.1097/j.pain.0000000000001302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Harita S, Stroman PW. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise. Magn Reson Med 2017; 78:2149-2156. [DOI: 10.1002/mrm.26606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Shreyas Harita
- Centre for Neuroscience Studies; Queen's University; Kingston Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies; Queen's University; Kingston Canada
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
- Department of Physics; Queen's University; Kingston Canada
| |
Collapse
|