1
|
Kutlutürk Karagöz I, Önder Tokuç E, Karabaş L, Rückert R, Kaya M, Munk MR. Expression of key SARS-CoV-2 entry molecules in surgically obtained human retinal biopsies. Int Ophthalmol 2023; 43:5055-5062. [PMID: 37847479 DOI: 10.1007/s10792-023-02908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE To investigate the presence of ACE2, TMPRSS2 and Furin, i.e., a key player in the ocular infection with SARS-COV-2, in surgically obtained human retinal tissue samples from SARS-CoV-2-negative patients, using gene expression analysis. METHODS The mechanisms and entry paths of ocular infections have been ill-defined so far. To better understand the possible entry routes, we used surgically explanted retinal tissue from nine patients that were not infected with SARS-CoV-2 and analyzed the message expression of the three key molecules that confer viral entry into cells using polymerase chain reaction. RESULTS The median age of the patients (n = 9) included in the study was 52 years (IQR 48, 55). Eight patients underwent surgery for rhegmatogenous retinal detachment and one patient for tractional retinal detachment. Gene expression for the proteins studied was detected in all nine patients. The results of analysis by Livak's method (2001) demonstrated a median TMPRSS2 gene expression value of 20.9 (IQR 11.7, 33.7), a median ACE2 gene expression value of 2.09 (IQR 1.14, 2.79) and a median Furin gene expression value of 8.33 (IQR 5.90, 11.8). CONCLUSION In conclusion, TMPRSS2, Furin and ACE2 are expressed in the retina and may contribute to the retinal involvement in COVID-19 patients. Expression may vary among individuals, which may explain why some patients may be more prone to retinal involvement during SARS-CoV-2 infection COVID-19 patients than others. Variability in the expression of TMPRSS2, Furin and ACE2 proteins themselves may also explain the presence or development of retinal symptoms of varying severity.
Collapse
Affiliation(s)
| | - Ecem Önder Tokuç
- Ophthalmology Department, Kocaeli University School of Medicine, Izmit, Kocaeli, Turkey
| | - Levent Karabaş
- Ophthalmology Department, Kocaeli University School of Medicine, Izmit, Kocaeli, Turkey.
| | | | | | - Marion R Munk
- Inselspital, University Hospital Bern, Bern, Switzerland
- BPRC, Bern Photographic Reading Center, University of Bern, Bern, Switzerland
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
3
|
Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 2021; 137:111329. [PMID: 33545660 DOI: 10.1016/j.biopha.2021.111329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
5
|
The Anti-Tumorigenic Activity of Sema3C in the Chick Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2019; 20:ijms20225672. [PMID: 31726800 PMCID: PMC6888630 DOI: 10.3390/ijms20225672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Sema3C protein, a member of the class 3 family of secreted semaphorins, play an important role in tumor development by regulating cell proliferation, migration, invasion, and angiogenesis processes. Depending on the type and malignancy grade of the tumor, Sema3C function remains controversial. In this study, we constructed a stably overexpressing Sema3C glioblastoma cell line U87 MG and tested it on the chicken embryo chorioallantoic membrane (CAM) model with the aim to reveal Sema3C protein function on angiogenesis process in ovo. Our experiments showed that Sema3C not only affects angiogenesis of CAM by inhibiting neovascularization but also acts as an anti-tumorigenic molecule by hampering U87 MG cell invasion into mesenchyme. The effects of Sema3C on CAM were similar to the effects of anti-epileptic drug sodium valproate (NaVP). Both, anti-angiogenic and anti-tumorigenic activities of Sema3C were enhanced by the treatment of NaVP and, importantly, were not attributed to the cytotoxic effects. Our studies suggest that Sema3C could be a promising target for glioblastoma treatment.
Collapse
|
7
|
Peacock JW, Takeuchi A, Hayashi N, Liu L, Tam KJ, Al Nakouzi N, Khazamipour N, Tombe T, Dejima T, Lee KC, Shiota M, Thaper D, Lee WC, Hui DH, Kuruma H, Ivanova L, Yenki P, Jiao IZ, Khosravi S, Mui ALF, Fazli L, Zoubeidi A, Daugaard M, Gleave ME, Ong CJ. SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Mol Med 2018; 10:219-238. [PMID: 29348142 PMCID: PMC5801490 DOI: 10.15252/emmm.201707689] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Growth factor receptor tyrosine kinase (RTK) pathway activation is a key mechanism for mediating cancer growth, survival, and treatment resistance. Cognate ligands play crucial roles in autocrine or paracrine stimulation of these RTK pathways. Here, we show SEMA3C drives activation of multiple RTKs including EGFR, ErbB2, and MET in a cognate ligand-independent manner via Plexin B1. SEMA3C expression levels increase in castration-resistant prostate cancer (CRPC), where it functions to promote cancer cell growth and resistance to androgen receptor pathway inhibition. SEMA3C inhibition delays CRPC and enzalutamide-resistant progression. Plexin B1 sema domain-containing:Fc fusion proteins suppress RTK signaling and cell growth and inhibit CRPC progression of LNCaP xenografts post-castration in vivo SEMA3C inhibition represents a novel therapeutic strategy for treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- James W Peacock
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Norihiro Hayashi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kevin J Tam
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Takashi Dejima
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Kevin Ck Lee
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Masaki Shiota
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medical Sciences Kyushi University, Fukuoka, Japan
| | - Daksh Thaper
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ivy Zf Jiao
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Alice L-F Mui
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|