1
|
Gao Y, Yuan L, Yuan J, Yang Y, Wang J, Chen Y, Zhang H, Ai Y, Deng H. Identification of COL4A4 variants in Chinese patients with familial hematuria. Front Genet 2023; 13:1064491. [PMID: 36699462 PMCID: PMC9868811 DOI: 10.3389/fgene.2022.1064491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Benign familial hematuria and Alport syndrome are common causes of familial hematuria among children and young adults, which are attributable to variants in the collagen type IV alpha chain genes, COL4A3, COL4A4, or COL4A5. The study was conducted to identify the underlying genetic causes in patients with familial hematuria. Methods: Two unrelated Han-Chinese pedigrees with familial hematuria were recruited for this study. Whole exome sequencing was combined with in silico analysis to identify potential genetic variants, followed by variant confirmation by Sanger sequencing. Reverse transcription, PCR, and Sanger sequencing were performed to evaluate the effect of the detected splicing variant on mRNA splicing. Results: A novel heterozygous splicing c.595-1G>A variant and a known heterozygous c.1715G>C variant in the collagen type IV alpha 4 chain gene (COL4A4) were identified and confirmed in patients of pedigree 1 and pedigree 2, respectively. Complementary DNA analysis indicated this splicing variant could abolish the canonical splice acceptor site and cause a single nucleotide deletion of exon 10, which was predicted to produce a truncated protein. Conclusions: The two COL4A4 variants, c.595-1G>A variant and c.1715G>C (p.Gly572Ala) variant, were identified as the genetic etiologies of two families with familial hematuria, respectively. Our study broadened the variant spectrum of the COL4A4 gene and explained the possible pathogenesis, which will benefit clinical management and genetic counseling.
Collapse
Affiliation(s)
- Yanan Gao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China
| | - Jinzhong Yuan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- National Health Committee Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yinze Ai
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China,*Correspondence: Hao Deng,
| |
Collapse
|
2
|
Madison J, Wilhelm K, Meehan DT, Delimont D, Samuelson G, Cosgrove D. Glomerular basement membrane deposition of collagen α1(III) in Alport glomeruli by mesangial filopodia injures podocytes via aberrant signaling through DDR1 and integrin α2β1. J Pathol 2022; 258:26-37. [PMID: 35607980 PMCID: PMC9378723 DOI: 10.1002/path.5969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
In Alport mice, activation of the endothelin A receptor (ETA R) in mesangial cells results in sub-endothelial invasion of glomerular capillaries by mesangial filopodia. Filopodia deposit mesangial matrix in the glomerular basement membrane (GBM), including laminin 211 which activates NF-κB, resulting in induction of inflammatory cytokines. Herein we show that collagen α1(III) is also deposited in the GBM. Collagen α1(III) localized to the mesangium in wild-type mice and was found in both the mesangium and the GBM in Alport mice. We show that collagen α1(III) activates discoidin domain receptor family, member 1 (DDR1) receptors both in vitro and in vivo. To elucidate whether collagen α1(III) might cause podocyte injury, cultured murine Alport podocytes were overlaid with recombinant collagen α1(III), or not, for 24 h and RNA was analyzed by RNA sequencing (RNA-seq). These same cells were subjected to siRNA knockdown for integrin α2 or DDR1 and the RNA was analyzed by RNA-seq. Results were validated in vivo using RNA-seq from RNA isolated from wild-type and Alport mouse glomeruli. Numerous genes associated with podocyte injury were up- or down-regulated in both Alport glomeruli and cultured podocytes treated with collagen α1(III), 18 of which have been associated previously with podocyte injury or glomerulonephritis. The data indicate α2β1 integrin/DDR1 co-receptor signaling as the dominant regulatory mechanism. This may explain earlier studies where deletion of either DDR1 or α2β1 integrin in Alport mice ameliorates renal pathology. © 2022 Boys Town National Research Hospital. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
3
|
Cosgrove D, Madison J. Molecular and Cellular Mechanisms Underlying the Initiation and Progression of Alport Glomerular Pathology. Front Med (Lausanne) 2022; 9:846152. [PMID: 35223933 PMCID: PMC8863674 DOI: 10.3389/fmed.2022.846152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Alport syndrome results from a myriad of variants in the COL4A3, COL4A4, or COL4A5 genes that encode type IV (basement membrane) collagens. Unlike type IV collagen α1(IV)2α2(IV)1 heterotrimers, which are ubiquitous in basement membranes, α3/α4/α5 have a limited tissue distribution. The absence of these basement membrane networks causes pathologies in some, but not all these tissues. Primarily the kidney glomerulus, the stria vascularis of the inner ear, the lens, and the retina as well as a rare link with aortic aneurisms. Defects in the glomerular basement membranes results in delayed onset and progressive focal segmental glomerulosclerosis ultimately requiring the patient to undergo dialysis and if accessible, kidney transplant. The lifespan of patients with Alport syndrome is ultimately significantly shortened. This review addresses the consequences of the altered glomerular basement membrane composition in Alport syndrome with specific emphasis on the mechanisms underlying initiation and progression of glomerular pathology.
Collapse
Affiliation(s)
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
4
|
Quinlan C, Rheault MN. Genetic Basis of Type IV Collagen Disorders of the Kidney. Clin J Am Soc Nephrol 2021; 16:1101-1109. [PMID: 33849932 PMCID: PMC8425620 DOI: 10.2215/cjn.19171220] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glomerular basement membrane is a vital component of the filtration barrier of the kidney and is primarily composed of a highly structured matrix of type IV collagen. Specific isoforms of type IV collagen, the α3(IV), α4(IV), and α5(IV) isoforms, assemble into trimers that are required for normal glomerular basement membrane function. Disruption or alteration in these isoforms leads to breakdown of the glomerular basement membrane structure and function and can lead to progressive CKD known as Alport syndrome. However, there is wide variability in phenotype among patients with mutations affecting type IV collagen that depends on a complex interplay of sex, genotype, and X-chromosome inactivation. This article reviews the genetic basis of collagen disorders of the kidney as well as potential treatments for these conditions, including direct alteration of the DNA, RNA therapies, and manipulation of collagen proteins.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Victoria, Australia,Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, Minnesota
| |
Collapse
|
5
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
Clark SD, Song W, Cianciolo R, Lees G, Nabity M, Liu S. Abnormal Expression of miR-21 in Kidney Tissue of Dogs With X-Linked Hereditary Nephropathy: A Canine Model of Chronic Kidney Disease. Vet Pathol 2018; 56:93-105. [DOI: 10.1177/0300985818806050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that act as regulators of posttranslational gene/protein expression and are known to play a key role in physiological and pathological processes. The objective of our study was to compare expression of miR-21 in renal tissue from dogs affected with chronic kidney disease (CKD) caused by X-linked hereditary nephropathy (XLHN), a disease equivalent to human Alport syndrome, to that from unaffected dogs. Additionally, we sought to characterize changes in relative mRNA expression of various genes associated with miR-21 function. miRNA was isolated from kidney tissue collected from both affected dogs and unaffected, age-matched littermates at defined milestones of disease progression, including end-stage renal disease (ESRD). Additionally, autopsy samples from affected dogs at ESRD and corresponding unaffected dogs were evaluated. Samples were scored based on histological changes, and relative expression of miR-21 and kidney disease-related genes was determined using quantitative real-time polymerase chain reaction. In affected dogs, significant upregulation of kidney miR-21 was first detected at the milestone corresponding with increased serum creatinine. Furthermore, miR-21 expression correlated significantly with urine protein: urine creatinine ratio, serum creatinine concentration, glomerular filtration rate, and histologic lesions (glomerular damage, tubular damage, chronic inflammation, and fibrosis). At end-stage disease, COL1A1, TGFB1 and its receptor, TGFB2, and Serpine1 were upregulated, while PPARA, PPARGC1A, ACADM, SOD1, and EGF were downregulated. In conclusion, miR-21 is abnormally upregulated in the kidneys of dogs with CKD caused by XLHN, which may play an important pathologic role in the progression of disease by dysregulating multiple pathways.
Collapse
Affiliation(s)
- Sabrina D. Clark
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Rachel Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - George Lees
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
7
|
Funk SD, Lin MH, Miner JH. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol 2018; 71-72:250-261. [PMID: 29673759 PMCID: PMC6146048 DOI: 10.1016/j.matbio.2018.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Hokamp JA, Leidy SA, Gaynanova I, Cianciolo RE, Nabity MB. Correlation of electrophoretic urine protein banding patterns with severity of renal damage in dogs with proteinuric chronic kidney disease. Vet Clin Pathol 2018; 47:425-434. [DOI: 10.1111/vcp.12648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica A. Hokamp
- Department of Veterinary Pathobiology; Texas A&M University; College Station Texas
| | - Sidney A. Leidy
- Department of Veterinary Pathobiology; Texas A&M University; College Station Texas
| | - Irina Gaynanova
- Department of Statistics; Texas A&M University; College Station Texas
| | - Rachel E. Cianciolo
- Department of Veterinary Biosciences; The Ohio State University; Columbus Ohio
| | - Mary B. Nabity
- Department of Veterinary Pathobiology; Texas A&M University; College Station Texas
| |
Collapse
|
9
|
Cosgrove D, Dufek B, Meehan DT, Delimont D, Hartnett M, Samuelson G, Gratton MA, Phillips G, MacKenna DA, Bain G. Lysyl oxidase like-2 contributes to renal fibrosis in Col4α3/Alport mice. Kidney Int 2018; 94:303-314. [PMID: 29759420 DOI: 10.1016/j.kint.2018.02.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
Lysyl oxidase like-2 (LOXL2) is an amine oxidase with both intracellular and extracellular functions. Extracellularly, LOXL2 promotes collagen and elastin crosslinking, whereas intracellularly, LOXL2 has been reported to modify histone H3, stabilize SNAIL, and reduce cell polarity. Although LOXL2 promotes liver and lung fibrosis, little is known regarding its role in renal fibrosis. Here we determine whether LOXL2 influences kidney disease in COL4A3 (-/-) Alport mice. These mice were treated with a small molecule inhibitor selective for LOXL2 or with vehicle and assessed for glomerular sclerosis and fibrosis, albuminuria, blood urea nitrogen, lifespan, pro-fibrotic gene expression and ultrastructure of the glomerular basement membrane. Laminin α2 deposition in the glomerular basement membrane and mesangial filopodial invasion of the glomerular capillaries were also assessed. LOXL2 inhibition significantly reduced interstitial fibrosis and mRNA expression of MMP-2, MMP-9, TGF-β1, and TNF-α. LOXL2 inhibitor treatment also reduced glomerulosclerosis, expression of MMP-10, MMP-12, and MCP-1 mRNA in glomeruli, and decreased albuminuria and blood urea nitrogen. Mesangial filopodial invasion of the capillary tufts was blunted, as was laminin α2 deposition in the glomerular basement membrane, and glomerular basement membrane ultrastructure was normalized. There was no effect on lifespan. Thus, LOXL2 plays an important role in promoting both glomerular and interstitial pathogenesis associated with Alport syndrome in mice. Other etiologies of chronic kidney disease are implicated with our observations.
Collapse
Affiliation(s)
| | - Brianna Dufek
- Boys Town National Research Hospital, Omaha, Nebraska, USA
| | | | - Duane Delimont
- Boys Town National Research Hospital, Omaha, Nebraska, USA
| | | | - Gina Samuelson
- Boys Town National Research Hospital, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|