1
|
Chou HH, Teng MS, Juang JMJ, Chiang FT, Tzeng IS, Wu S, Ko YL. Circulating YKL-40 levels but not CHI3L1 or TRIB1 gene variants predict long-term outcomes in patients with angiographically confirmed multivessel coronary artery disease. Sci Rep 2024; 14:29416. [PMID: 39592699 PMCID: PMC11599938 DOI: 10.1038/s41598-024-81190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024] Open
Abstract
YKL-40 is significantly associated with the prevalence and severity of coronary artery disease (CAD). YKL-40 levels are significantly associated with variations in the CHI3L1 and TRIB1 genes. We investigated candidate genes for YKL-40 levels and evaluated the prognostic value of this biomarker and corresponding variants for long-term outcomes in patients with CAD. We included 4664 and 521 participants from the Taiwan Biobank (TWB) and CAD cohorts, respectively. Candidate variants for circulating YKL-40 levels were investigated using genome-wide association study (GWAS) data from the TWB cohort, and the results were validated in the CAD cohort. The primary endpoint was all-cause mortality. The secondary endpoint was major adverse cardiac events (MACEs), which included the composite endpoints of all-cause mortality, nonfatal acute coronary syndrome, hospitalization for heart failure, and nonfatal stroke. According to the GWAS data from the TWB cohort, three CHI3L1 variants (rs4950928, rs10399931, and rs872129) and one TRIB1 variant (rs6982502) were independently associated with YKL-40 levels. These findings were validated in the CAD cohort. The combined CHI3L1 and TRIB1 weighted genetic risk scores (WGRSs) were not associated with the long-term outcomes (median follow-up period of 3.7 years) in patients with CAD. Conversely, patients with YKL-40 levels in the upper tertile had the highest rates of all-cause mortality and MACEs (log-rank p = 9.58 × 10-8 for all-cause mortality and 1.34 × 10-7 for MACEs). Furthermore, YKL-40 levels predicted poor clinical outcomes only in patients with multivessel CAD (log-rank p = 3.0 × 10-6 for all-cause mortality and 1.10 × 10-5 for MACEs) and not in patients with single-vessel CAD. This study revealed that YKL-40 levels but not the combined CHI3L1 and TRIB1 WGRSs were found to be independent predictors of poor clinical outcomes in patients with multivessel CAD.
Collapse
Affiliation(s)
- Hsin-Hua Chou
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Cardiology, Cardiovascular Center, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Yu-Lin Ko
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City, 23142, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Chou HH, Hsu LA, Juang JMJ, Chiang FT, Teng MS, Wu S, Ko YL. Synergistic Effects of Weighted Genetic Risk Scores and Resistin and sST2 Levels on the Prognostication of Long-Term Outcomes in Patients with Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23084292. [PMID: 35457109 PMCID: PMC9025936 DOI: 10.3390/ijms23084292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Resistin and soluble suppression of tumorigenicity 2 (sST2) are useful predictors in patients with coronary artery disease (CAD). Their serum levels are significantly attributed to variations in RETN and IL1RL1 loci. We investigated candidate variants in the RETN locus for resistin levels and those in the IL1RL1 locus for sST2 levels and evaluated the prognostication of these two biomarkers and the corresponding variants for long-term outcomes in the patients with CAD. We included 4652, 557, and 512 Chinese participants from the Taiwan Biobank (TWB), cardiovascular health examination (CH), and CAD cohorts, respectively. Candidate variants in RETN and IL1RL1 were investigated using whole-genome sequence (WGS) and genome-wide association study (GWAS) data in the TWB cohort. The weighted genetic risk scores (WGRS) of RETN and IL1RL1 with resistin and sST2 levels were calculated. Kaplan–Meier curves were used to analyze the prognostication of resistin and sST2 levels, WGRS of RETN and IL1RL1, and their combinations. Three RETN variants (rs3219175, rs370006313, and rs3745368) and two IL1RL1 variants (rs10183388 and rs4142132) were independently associated with resistin and sST2 levels as per the WGS and GWAS data in the TWB cohort and were further validated in the CH and CAD cohorts. In combination, these variants explained 53.7% and 28.0% of the variation in resistin and sST2 levels, respectively. In the CAD cohort, higher resistin and sST2 levels predicted higher rates of all-cause mortality and major adverse cardiac events (MACEs) during long-term follow-up, but WGRS of RETN and IL1RL1 variants had no impact on these outcomes. A synergistic effect of certain combinations of biomarkers with RETN and IL1RL1 variants was found on the prognostication of long-term outcomes: Patients with high resistin levels/low RETN WGRS and those with high sST2 levels/low IL1RL1 WGRS had significantly higher all-cause mortality and MACEs rates, and those with both these combinations had the poorest outcomes. Both higher resistin and sST2 levels, but not RETN and IL1RL1 variants, predict poor long-term outcomes in patients with CAD. Furthermore, combining resistin and sST2 levels with the WGRS of RETN and IL1RL1 genotyping exerts a synergistic effect on the prognostication of CAD outcomes. Future studies including a large sample size of participants with different ethnic populations are needed to verify this finding.
Collapse
Affiliation(s)
- Hsin-Hua Chou
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (J.-M.J.J.); (F.-T.C.)
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (J.-M.J.J.); (F.-T.C.)
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Cardiovascular Center and Division of Cardiology, Fu-Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Lin Ko
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (M.-S.T.); (S.W.)
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
4
|
Morsing SKH, Zeeuw van der Laan E, van Stalborch AD, van Buul JD, Vlaar APJ, Kapur R. Endothelial cells of pulmonary origin display unique sensitivity to the bacterial endotoxin lipopolysaccharide. Physiol Rep 2022; 10:e15271. [PMID: 35439361 PMCID: PMC9017980 DOI: 10.14814/phy2.15271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 06/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major clinical problem without available therapies. Known risks for ARDS include severe sepsis, SARS-CoV-2, gram-negative bacteria, trauma, pancreatitis, and blood transfusion. During ARDS, blood fluids and inflammatory cells enter the alveoli, preventing oxygen exchange from air into blood vessels. Reduced pulmonary endothelial barrier function, resulting in leakage of plasma from blood vessels, is one of the major determinants in ARDS. It is, however, unknown why systemic inflammation particularly targets the pulmonary endothelium, as endothelial cells (ECs) line all vessels in the vascular system of the body. In this study, we examined ECs of pulmonary, umbilical, renal, pancreatic, and cardiac origin for upregulation of adhesion molecules, ability to facilitate neutrophil (PMN) trans-endothelial migration (TEM) and for endothelial barrier function, in response to the gram-negative bacterial endotoxin LPS. Interestingly, we found that upon LPS stimulation, pulmonary ECs showed increased levels of adhesion molecules, facilitated more PMN-TEM and significantly perturbed the endothelial barrier, compared to other types of ECs. These observations could partly be explained by a higher expression of the adhesion molecule ICAM-1 on the pulmonary endothelial surface compared to other ECs. Moreover, we identified an increased expression of Cadherin-13 in pulmonary ECs, for which we demonstrated that it aids PMN-TEM in pulmonary ECs stimulated with LPS. We conclude that pulmonary ECs are uniquely sensitive to LPS, and intrinsically different, compared to ECs from other vascular beds. This may add to our understanding of the development of ARDS upon systemic inflammation.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eveline Zeeuw van der Laan
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anne‐Marieke D. van Stalborch
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM)Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS)University of AmsterdamAmsterdamThe Netherlands
| | | | - Rick Kapur
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
5
|
Chen KY, Wu KC, Hueng DY, Huang KF, Pang CY. Anti-inflammatory effects of powdered product of Bu Yang Huan Wu decoction: Possible role in protecting against Transient Focal Cerebral Ischemia. Int J Med Sci 2020; 17:1854-1863. [PMID: 32714088 PMCID: PMC7378667 DOI: 10.7150/ijms.46581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Bu Yang Huan Wu decoction (BYHW) is a traditional Chinese medicine (TCM) that consists of several herbs and has been used in patients with ischemic stroke for centuries. Although powdered formula of BYHW has widely been prescribed in clinic nowadays, evidence-based effectiveness and mechanism of action of BYHW powdered product in stroke remain to be characterized. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion for 24 h (ischemia/reperfusion; I/R) or sham surgery. After I/R, the rats were then given low dose (0.5 g/kg) and high dose (2.5 g/kg) of BYHW or vehicle by oral gavage twice a day for seven consecutive days. The results showed that I/R induced obvious cerebral infarction and neurobehavioral defects, in parallel with histological aberrations and extensive signaling of proinflammatory cytokines, including tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), in the stroke model. Post-I/R treatment with BYHW powdered product significantly reduced the infarct area and ameliorated neurofunctional defects in a dose-dependent manner. The dose dependence was associated with TNF-α downregulation and interleukin-10 (IL-10) induction. In summary, the present findings demonstrated that BYHW powdered product exhibited therapeutic efficacy for experimental stroke and a higher dose treatment may strengthen the effectiveness via inflammatory modulation.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Surgery, New Taipei City Hospital, New Taipei city, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien city, Taiwan
| | - Kuo-Chen Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Huang
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Medical Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien city, Taiwan.,Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien city, Taiwan
| |
Collapse
|
6
|
Perdomo-Sabogal Á, Nowick K. Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease. Genome Biol Evol 2019; 11:2178-2193. [PMID: 31228201 PMCID: PMC6685493 DOI: 10.1093/gbe/evz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation.
Collapse
Affiliation(s)
- Álvaro Perdomo-Sabogal
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| | - Katja Nowick
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| |
Collapse
|
7
|
Tao B, Xiao Y, Hu N, Shah C, Liu L, Gao X, Liu J, Zhang W, Yao L, Xu H, Hua J, Lui S. Reduced cortical thickness related to single nucleotide polymorphisms in the major histocompatibility complex region in antipsychotic-naive schizophrenia. Brain Behav 2019; 9:e01253. [PMID: 30924326 PMCID: PMC6598395 DOI: 10.1002/brb3.1253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to explore the relationships between changes in cortical thickness and single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) region in a group of antipsychotic-naive schizophrenia (AN-SCZ) patients. Methods Twenty-five AN-SCZ patients and 51 healthy controls (HCs) participated in this study. General linear models were used to identify associations between the average cortical thicknesses of each brain region (N = 68) and each of the 11 SNPs in the MHC region in the AN-SCZ patients and HCs. Next, we performed independent-sample t tests to investigate whether cortical thickness was significantly lower in the AN-SCZ patients than in HCs in the brain regions that were significantly associated with the SNPs. Finally, we examined the correlations between clinical symptoms and cortical thickness in the above brain areas in the whole AN-SCZ group using Pearson correlation tests. Results Seven of the 11 SNPs within the MHC region were significantly associated with cortical thickness only in the AN-SCZ patients; these included rs1635, rs1736913, rs2021722, rs204999, rs2523722, rs3131296, and rs9272105. The AN-SCZ patients had significantly thinner cortical thicknesses in the above brain regions, especially the prefrontal cortex. Furthermore, the left entorhinal region was negatively correlated with Positive and Negative Symptom Scale (PANSS) activation scores in the AN-SCZ group (r = -0.601, p = 0.03). Conclusions This study provides evidence demonstrating the potential effects of MHC risk variants in cortical thickness deficits in AN-SCZ. These data also support the notion that the immune system plays critical roles in the pathology of schizophrenia, which is mediated via the modulation of the development of cerebral cortical structures.
Collapse
Affiliation(s)
- Bo Tao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Chandan Shah
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Liu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Gao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Jieke Liu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jun Hua
- Department of Radiology, Johns Hopkins University of Medicine, Baltimore, Maryland
| | - Su Lui
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|