1
|
Liang Z, Wang S, Zhu X, Ma J, Yao H, Wu Z. A small RNA from Streptococcus suis epidemic ST7 strain promotes bacterial survival in host blood and brain by enhancing oxidative stress resistance. Virulence 2025; 16:2491635. [PMID: 40237541 PMCID: PMC12005413 DOI: 10.1080/21505594.2025.2491635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus suis is a Gram-positive pathogen causing septicaemia and meningitis in pigs and humans. However, how S. suis maintains a high bacterial load in the blood and brain is poorly understood. In this study, we found that a small RNA rss03 is predominantly present in S. suis, Streptococcus parasuis, and Streptococcus ruminantium, implying a conserved biological function. rss03 with a size of 303 nt mainly exists in S. suis sequence type (ST) 1 and epidemic ST7 strains that are responsible for human infections in China. Using MS2-affinity purification coupled with RNA sequencing (MAPS), proteomics analysis, and CopraRNA prediction, 14 direct targets of rss03 from an ST7 strain were identified. These direct targets mainly involve substance transport, transcriptional regulation, rRNA modification, and stress response. A more detailed analysis reveals that rss03 interacts with the coding region of glpF mRNA, and unexpectedly rss03 protects glpF mRNA from degradation by RNase J1. The GlpF protein is an aquaporin, contributes to S. suis oxidative stress resistance by H2O2 efflux, and facilitates bacterial survival in murine macrophages RAW264.7. Finally, we showed that rss03 and GlpF are required to maintain a high bacterial load in mouse blood and brain. Our study presents the first sRNA targetome in streptococci, enriches the knowledge of sRNA regulation in streptococci, and identifies pathways contributing to S. suis pathogenesis.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Shuoyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, China
| |
Collapse
|
2
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
3
|
Arenas J, Zomer A, Harders-Westerveen J, Bootsma HJ, De Jonge MI, Stockhofe-Zurwieden N, Smith HE, De Greeff A. Identification of conditionally essential genes for Streptococcus suis infection in pigs. Virulence 2021; 11:446-464. [PMID: 32419603 PMCID: PMC7239030 DOI: 10.1080/21505594.2020.1764173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and zoonotic pathogen that causes meningitis and sepsis in pigs and humans. The aim of this study was to identify genes required for S. suis infection. We created Tn-Seq libraries in a virulent S. suis strain 10, which was used to inoculate pigs in an intrathecal experimental infection. Comparative analysis of the relative abundance of mutants recovered from different sites of infection (blood, cerebrospinal fluid, and meninges of the brain) identified 361 conditionally essential genes, i.e. required for infection, which is about 18% of the genome. The conditionally essential genes were primarily involved in metabolic and transport processes, regulation, ribosomal structure and biogenesis, transcription, and cell wall membrane and envelope biogenesis, stress defenses, and immune evasion. Directed mutants were created in a set of 10 genes of different genetic ontologies and their role was determined in ex vivo models. Mutants showed different levels of sensitivity to survival in whole blood, serum, cerebrospinal fluid, thermic shock, and stress conditions, as compared to the wild type. Additionally, the role of three selected mutants was validated in co-infection experiments in which pigs were infected with both wild type and isogenic mutant strains. The genetic determinants of infection identified in this work contribute to novel insights in S. suis pathogenesis and could serve as targets for novel vaccines or antimicrobial drugs.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jose Harders-Westerveen
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Hilde E Smith
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Astrid De Greeff
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
4
|
Zheng C, Wei M, Jia M, Cao M. Involvement of Various Enzymes in the Physiology and Pathogenesis of Streptococcus suis. Vet Sci 2020; 7:vetsci7040143. [PMID: 32977655 PMCID: PMC7712317 DOI: 10.3390/vetsci7040143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis causes severe infections in both swine and humans, making it a serious threat to the swine industry and public health. Insight into the physiology and pathogenesis of S. suis undoubtedly contributes to the control of its infection. During the infection process, a wide variety of virulence factors enable S. suis to colonize, invade, and spread in the host, thus causing localized infections and/or systemic diseases. Enzymes catalyze almost all aspects of metabolism in living organisms. Numerous enzymes have been characterized in extensive detail in S. suis, and have shown to be involved in the pathogenesis and/or physiology of this pathogen. In this review, we describe the progress in the study of some representative enzymes in S. suis, such as ATPases, immunoglobulin-degrading enzymes, and eukaryote-like serine/threonine kinase and phosphatase, and we highlight the important role of various enzymes in the physiology and pathogenesis of this pathogen. The controversies about the current understanding of certain enzymes are also discussed here. Additionally, we provide suggestions about future directions in the study of enzymes in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-152-0527-9658
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.W.); (M.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - ManMan Cao
- Guangdong Maoming Agriculture & Forestry Techical College, Maoming 525000, China;
| |
Collapse
|
5
|
Screening of Virulence-Related Transcriptional Regulators in Streptococcus suis. Genes (Basel) 2020; 11:genes11090972. [PMID: 32825733 PMCID: PMC7564649 DOI: 10.3390/genes11090972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis (S.suis) is an important zoonotic pathogen that causes many severe diseases in pigs and humans. Virulence-related transcriptional regulators have been widely reported in pathogenic microorganisms, but only a few have been identified in S.suis. Our aim was to screen virulence-related transcriptional regulators in S.suis. A total of 89 such genes were predicted in the S.suis genome, of which 22 were up-regulated and 18 were down-regulated during S.suis infection in mice. To evaluate the roles of these differentially expressed factors in S.suis virulence, deletion mutants were constructed, and 10 mutants were successfully obtained. Among these genes, the deletion of comR, sitR, or sxvR caused significantly decreased virulence in mice, compared to that with the wild-type strain. Moreover, the survival of ΔcomR, ΔsitR, and ΔsxvR mutant strains in blood was significantly reduced both in vitro and in vivo. Furthermore, their pro-inflammatory abilities were also obviously decreased in vivo. The regulatory mechanisms of comR, sitR, and sxvR were then analyzed by whole transcriptome RNA sequencing (RNA-Seq). Results indicated that the absence of comR induced the down-regulation of 17 virulence factors or virulence-related factors, including genes involved in the synthesis of capsules, oxidative stress tolerance, immune evasion, and cell division. Furthermore, three and two virulence factors or virulence-related factors were down-regulated upon deletion of sitR and sxvR, respectively. Thus, this study reports the discovery of three virulence-associated transcriptional regulatory factors in S.suis. These factors could ultimately be targeted to control infection caused by these bacteria.
Collapse
|
6
|
Li Z, Chang P, Xu J, Tan C, Wang X, Bei W, Li J. A Streptococcus suis Live Vaccine Suppresses Streptococcal Toxic Shock-Like Syndrome and Provides Sequence Type-Independent Protection. J Infect Dis 2019; 219:448-458. [PMID: 30165645 DOI: 10.1093/infdis/jiy512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Streptococcus suis is an encapsulated zoonotic pathogen. Increasing antimicrobial resistance invokes the need for effective vaccines. Despite many attempts to develop an effective vaccine, none is currently available. Methods A capsular polysaccharide (CPS)-expressing attenuated mutant 2015033 was constructed by deleting 5 virulence-associated factors (sly, scpA, ssnA, fhb, and ssads) in an infective S. suis strain SC19. The safety and immune effect of 2015033 were determined both in vitro and in vivo. Results Deletion of 5 genes did not impact the growth ability and CPS generation of 2015033, and the mutant exhibited no cytotoxicity in different cell models. 2015033 was more easily eliminated by innate immunity both in vitro and in vivo. In addition, 2015033 showed a diminished invasive ability in different mouse organs (brain, lung, and liver) and avirulent properties in mice associated with weak inflammation-inducing ability. Immunization with 2015033 triggered T cell-dependent immunity, suppressed streptococcal toxic shock-like syndrome, and conferred sequence type-independent protection to mice during infection. Conclusions This study presents the feasibility of the strategy of multigene deletion for the development of promising live vaccines against invasive encapsulated pathogens.
Collapse
Affiliation(s)
- Zhiwei Li
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Peixi Chang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiali Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaohong Wang
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinquan Li
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|