1
|
The application of omic technologies to research in sepsis-associated acute kidney injury. Pediatr Nephrol 2021; 36:1075-1086. [PMID: 32356189 PMCID: PMC7606209 DOI: 10.1007/s00467-020-04557-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is common in critically ill children and adults, and sepsis-associated AKI (SA-AKI) is the most frequent cause of AKI in the ICU. To date, no mechanistically targeted therapeutic interventions have been identified. High-throughput "omic" technologies (e.g., genomics, proteomics, metabolomics, etc.) offer a new angle of approach to achieve this end. In this review, we provide an update on the current understanding of SA-AKI pathophysiology. Omic technologies themselves are briefly discussed to facilitate interpretation of studies using them. We next summarize the body of SA-AKI research to date that has employed omic technologies. Importantly, omic studies are helping to elucidate a pathophysiology of SA-AKI centered around cellular stress responses, metabolic changes, and dysregulation of energy production that underlie its clinical features. Finally, we propose opportunities for future research using clinically relevant animal models, integrating multiple omic technologies and ultimately progressing to translational human studies focusing therapeutic strategies on targeted disease mechanisms.
Collapse
|
2
|
Anderson K, Cañadas-Garre M, Chambers R, Maxwell AP, McKnight AJ. The Challenges of Chromosome Y Analysis and the Implications for Chronic Kidney Disease. Front Genet 2019; 10:781. [PMID: 31552093 PMCID: PMC6737325 DOI: 10.3389/fgene.2019.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The role of chromosome Y in chronic kidney disease (CKD) remains unknown, as chromosome Y is typically excluded from genetic analysis in CKD. The complex, sex-specific presentation of CKD could be influenced by chromosome Y genetic variation, but there is limited published research available to confirm or reject this hypothesis. Although traditionally thought to be associated with male-specific disease, evidence linking chromosome Y genetic variation to common complex disorders highlights a potential gap in CKD research. Chromosome Y variation has been associated with cardiovascular disease, a condition closely linked to CKD and one with a very similar sexual dimorphism. Relatively few sources of genetic variation in chromosome Y have been examined in CKD. The association between chromosome Y aneuploidy and CKD has never been explored comprehensively, while analyses of microdeletions, copy number variation, and single-nucleotide polymorphisms in CKD have been largely limited to the autosomes or chromosome X. In many studies, it is unclear whether the analyses excluded chromosome Y or simply did not report negative results. Lack of imputation, poor cross-study comparability, and requirement for separate or additional analyses in comparison with autosomal chromosomes means that chromosome Y is under-investigated in the context of CKD. Limitations in genotyping arrays could be overcome through use of whole-chromosome sequencing of chromosome Y that may allow analysis of many different types of genetic variation across the chromosome to determine if chromosome Y genetic variation is associated with CKD.
Collapse
Affiliation(s)
- Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Robyn Chambers
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
3
|
Coto E, Díaz Corte C, Tranche S, Gómez J, Reguero JR, Alonso B, Iglesias S, Gil-Peña H, Yin X, Coto-Segura P. Genetic Variation in the H19-IGF2 Cluster Might Confer Risk of Developing Impaired Renal Function. DNA Cell Biol 2018; 37:617-625. [PMID: 29889555 DOI: 10.1089/dna.2017.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The H19-IGF2 imprinted gene region could be implicated in the risk of developing impaired renal function (IRF). Our aim was to determine the association of several common H19-IGF2 variants and IRF in a cohort of elderly healthy individuals. The study involved 675 individuals >65 years of age, 184 with type 2 diabetes mellitus (T2DM), and 105 with IRF (estimated glomerular filtration rate [eGFR] <60). They were genotyped for two common H19 single nucleotide polymorphisms (SNPs) (rs2839698 and rs10732516), one H19-IGF2 intergenic indel (rs201858505), and one indel in the 3'UTR of the IGF2. For the H19 SNPs, we also determined the allele present in the methylated chromosome through genotyping the DNA digested with a methylation-sensitive endonuclease. None of the four H19-IGF2 variants was associated with IRF in our cohort. We found a significantly higher frequency of the 3'UTR IGF2 deletion (D) in the eGFR <60 group (p = 0.01; odds ratio = 1.16, 95% confidence interval = 1.10-2.51). This association was independent of age and T2DM, two strong predictors of IRF. In conclusion, a common indel variant in the 3'UTR of the IGF2 gene was associated with the risk of IRF. This association could be explained by the role of IGF2 in podocyte survival, through regulation of IGF2 expression by differential binding of miRNAs to the indel sequences. Functional studies should be necessary to clarify this issue.
Collapse
Affiliation(s)
- Eliecer Coto
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain .,2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain
| | - Carmen Díaz Corte
- 2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,5 Nefrología , HUCA, Oviedo, Spain
| | | | - Juan Gómez
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | | | - Belén Alonso
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Sara Iglesias
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Helena Gil-Peña
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Xueqian Yin
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Pablo Coto-Segura
- 2 Universidad de Oviedo , Oviedo, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,7 Cardiología , HUCA, Oviedo, Spain .,8 Dermatología , HUCA, Oviedo, Spain
| |
Collapse
|