1
|
Navarre C, Orval R, Peeters M, Bailly N, Chaumont F. Issue when expressing a recombinant protein under the control of p 35S in Nicotiana tabacum BY-2 cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1266775. [PMID: 38023881 PMCID: PMC10679441 DOI: 10.3389/fpls.2023.1266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Several recombinant proteins have been successfully produced in plants. This usually requires Agrobacterium-mediated cell transformation to deliver the T-DNA into the nucleus of plant cells. However, some genetic instability may threaten the integrity of the expression cassette during its delivery via A. tumefaciens, especially when the protein of interest is toxic to the bacteria. In particular, we found that a Tn3 transposon can be transferred from the pAL4404 Ti plasmid of A. tumefaciens LBA4404 into the expression cassette when using the widely adopted 35S promoter, thereby damaging T-DNA and preventing correct expression of the gene of interest in Nicotiana tabacum BY-2 suspension cells.
Collapse
Affiliation(s)
- Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | | | | | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Ranawaka B, An J, Lorenc MT, Jung H, Sulli M, Aprea G, Roden S, Llaca V, Hayashi S, Asadyar L, LeBlanc Z, Ahmed Z, Naim F, de Campos SB, Cooper T, de Felippes FF, Dong P, Zhong S, Garcia-Carpintero V, Orzaez D, Dudley KJ, Bombarely A, Bally J, Winefield C, Giuliano G, Waterhouse PM. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. NATURE PLANTS 2023; 9:1558-1571. [PMID: 37563457 PMCID: PMC10505560 DOI: 10.1038/s41477-023-01489-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Nicotiana benthamiana is an invaluable model plant and biotechnology platform with a ~3 Gb allotetraploid genome. To further improve its usefulness and versatility, we have produced high-quality chromosome-level genome assemblies, coupled with transcriptome, epigenome, microRNA and transposable element datasets, for the ubiquitously used LAB strain and a related wild accession, QLD. In addition, single nucleotide polymorphism maps have been produced for a further two laboratory strains and four wild accessions. Despite the loss of five chromosomes from the ancestral tetraploid, expansion of intergenic regions, widespread segmental allopolyploidy, advanced diploidization and evidence of recent bursts of Copia pseudovirus (Copia) mobility not seen in other Nicotiana genomes, the two subgenomes of N. benthamiana show large regions of synteny across the Solanaceae. LAB and QLD have many genetic, metabolic and phenotypic differences, including disparate RNA interference responses, but are highly interfertile and amenable to genome editing and both transient and stable transformation. The LAB/QLD combination has the potential to be as useful as the Columbia-0/Landsberg errecta partnership, utilized from the early pioneering days of Arabidopsis genomics to today.
Collapse
Affiliation(s)
- Buddhini Ranawaka
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Jiyuan An
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| | - Michał T Lorenc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Hyungtaek Jung
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sally Roden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Victor Llaca
- Genomics Technologies, Corteva Agriscience, Johnston, IA, USA
| | - Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Leila Asadyar
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Zacharie LeBlanc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Zuba Ahmed
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Fatima Naim
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Samanta Bolzan de Campos
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tal Cooper
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Felipe F de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Pengfei Dong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Victor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- QUT Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
- Università degli Studi di Milano, Milan, Italy
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Christopher Winefield
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand.
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Dalakouras A, Katsaouni A, Avramidou M, Dadami E, Tsiouri O, Vasileiadis S, Makris A, Georgopoulou ME, Papadopoulou KK. A beneficial fungal root endophyte triggers systemic RNA silencing and DNA methylation of a host reporter gene. RNA Biol 2023; 20:20-30. [PMID: 36573793 PMCID: PMC9809956 DOI: 10.1080/15476286.2022.2159158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A growing body of evidence suggests that RNA interference (RNAi) plays a pivotal role in the communication between plants and pathogenic fungi, where a bi-directional trans-kingdom RNAi is established to the advantage of either the host or the pathogen. Similar mechanisms acting during plant association with non-pathogenic symbiotic microorganisms have been elusive to this date. To determine whether root endophytes can induce systemic RNAi responses to their host plants, we designed an experimental reporter-based system consisting of the root-restricted, beneficial fungal endophyte, Fusarium solani strain K (FsK) and its host Nicotiana benthamiana. Since not all fungi encode the RNAi machinery, we first needed to validate that FsK does so, by identifying its core RNAi enzymes (2 Dicer-like genes, 2 Argonautes and 4 RNA-dependent RNA polymerases) and by showing its susceptibility to in vitro RNAi upon exogenous application of double stranded RNAs (dsRNAs). Upon establishing this, we transformed FsK with a hairpin RNA (hpRNA) construct designed to target a reporter gene in its host N. benthamiana. The hpRNA was processed by FsK RNAi machinery predominantly into 21-24-nt small RNAs that triggered RNA silencing but not DNA methylation in the fungal hyphae. Importantly, when the hpRNA-expressing FsK was used to inoculate N. benthamiana, systemic RNA silencing and DNA methylation of the host reporter gene was recorded. Our data suggest that RNAi signals can be translocated by root endophytes to their hosts and can modulate gene expression during mutualism, which may be translated to beneficial phenotypes.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece,Hellenic Agricultural Organization Demeter, Institute of Industrial and Forage Crops, Larissa, Greece,CONTACT Athanasios Dalakouras University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece; Hellenic Agricultural Organization Demeter, Institute of Industrial and Forage Crops, Larissa, Greece
| | - Afrodite Katsaouni
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Marianna Avramidou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Elena Dadami
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Olga Tsiouri
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | - Athanasios Makris
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece
| | | | | |
Collapse
|
4
|
Çalışır K, Krczal G, Uslu VV. Small RNA-seq dataset of wild type and 16C Nicotiana benthamiana leaves sprayed with naked dsRNA using the high-pressure spraying technique. Data Brief 2022; 45:108706. [PMID: 36426005 PMCID: PMC9679692 DOI: 10.1016/j.dib.2022.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Double-stranded RNA (dsRNA) applications have emerged as promising alternatives to chemical plant pesticides. It has been proposed that the protective effect of dsRNA is mediated by the RNA interference (RNAi) mechanism. Small RNAs (sRNAs) are one of the landmarks of RNAi mechanisms. Two classes of sRNAs appear upon RNAi, triggered by dsRNA: The cleavage products of the dsRNA mapping directly to the dsRNA sequence and the transitive sRNAs mapping to the target transcript outside of the dsRNA sequence. Therefore, the sRNA-seq data obtained from dsRNA-treated plants have been exclusively analysed in the context of the target genes and the outcome has been considered essential to evaluate the underlying mechanism of dsRNA mediated plant protection. Using high-pressure spraying technology (HPST), we have applied a GFP targeting 139bp-long dsRNA on wild type (WT) and GFP expressing (16C) Nicotiana benthamiana plants in biological triplicates. As a control, we applied water with HPST on 16C N. benthamiana. We have acquired sRNA-seq data on the treated and control leaves 5 days post spraying. In this dataset, we have expanded our sRNA-seq analysis from the target GFP transgene sequence to the whole transcriptome of N. benthamiana to provide the community with a resource for the small RNA landscape after high-pressure spraying in 16C and WT samples. Furthermore, we have provided a comparison of sRNA landscape between WT and 16C lines.
Collapse
|
5
|
Farooq N, Ather L, Shafiq M, Nawaz-Ul-Rehman MS, Haseeb M, Anjum T, Abbas Q, Hussain M, Ali N, Asad Abbas SAA, Mushtaq S, Haider MS, Sadiq S, Shahid MA. Magnetofection approach for the transformation of okra using green iron nanoparticles. Sci Rep 2022; 12:16568. [PMID: 36195624 PMCID: PMC9532403 DOI: 10.1038/s41598-022-20569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Climate change, pesticide resistance, and the need for developing new plant varieties have galvanized biotechnologists to find new solutions in order to produce transgenic plants. Over the last decade scientists are working on green metallic nanoparticles to develop DNA delivery systems for plants. In the current study, green Iron nanoparticles were synthesized using leaf extract of Camellia sinensis (green tea) and Iron Chloride (FeCl3), the characterization and Confirmation was done using UV-VIS Spectroscopy, FTIR, SEM, and TEM. Using these nanoparticles, a novel method of gene transformation in okra plants was developed, with a combination of different Magnetofection factors. Maximum gene transformation efficiency was observed at the DNA to Iron-nanoparticles ratio of 1:20, by rotation of mixture (Plasmid DNA, Iron-nanoparticles, and seed embryo) at 800 rpm for 5 h. Using this approach, the transformation of the GFP (green fluorescent protein) gene was successfully carried out in Abelmoschus esculentus (Okra plant). The DNA transformation was confirmed by observing the expression of transgene GFP via Laser Scanning Confocal Microscope (LSCM) and PCR. This method is highly economical, adaptable, genotype independent, eco-friendly, and time-saving as well. We infer that this approach can be a potential solution to combat the yield and immunity challenges of plants against pathogens.
Collapse
Affiliation(s)
- Naila Farooq
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Laraib Ather
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | | | - Muhammad Haseeb
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qamar Abbas
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Mujahid Hussain
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Numan Ali
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Syed Agha Armaghan Asad Abbas
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, P.O BOX. 63100, Bahawalpur, Pakistan
| | - Muhammad Adnan Shahid
- North Florida Research and Education Center, 155 Research Rd., Quincy, FL, 32351, USA.
| |
Collapse
|
6
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
7
|
Uslu VV, Dalakouras A, Steffens VA, Krczal G, Wassenegger M. High-pressure sprayed siRNAs influence the efficiency but not the profile of transitive silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1199-1212. [PMID: 34882879 DOI: 10.1111/tpj.15625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.
Collapse
Affiliation(s)
- Veli Vural Uslu
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Athanasios Dalakouras
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DEMETER, Larissa, Greece
| | - Victor A Steffens
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Banakar R, Rai KM, Zhang F. CRISPR DNA- and RNP-Mediated Genome Editing via Nicotiana benthamiana Protoplast Transformation and Regeneration. Methods Mol Biol 2022; 2464:65-82. [PMID: 35258825 DOI: 10.1007/978-1-0716-2164-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated system) has become the multipurpose tool to manipulate plant genome via their programmable sequence recognition, binding, and cleavage activities. Efficient plant genome modification often requires robust plant transformation. For most plant species, the CRISPR/Cas reagents are delivered into plants as plasmids by Agrobacterium-mediated T-DNA transfer or biolistic approaches. However, these methods are generally inefficient, heavily genotype dependent, and low throughput. Among the alternative plant transformation approaches, the protoplast-based transformation holds the potential to directly deliver DNA, RNA, or protein molecules into plant cells in an efficient and high-throughput manner. Here, we presented a robust and simplified protocol for protoplast-based DNA/ribonucleoprotein (RNP )-mediated genome editing in the model species Nicotiana benthamiana. Using this protocol, we have achieved the gene editing efficiency at 30-60% in protoplasts and 50-80% in regenerated calli and plants. The edited protoplasts can be readily regenerated without selection agents owing to highly efficient DNA or preassembled RNP transformation frequency. Lastly, this protocol utilized an improved culture media regime to overcome the complex media composition used in the previous studies. It offers quick turnaround time and higher throughput to facilitate the development of new genetic engineering technologies and holds the promise to combine with other genetic and genomic tools for fundamental and translational plant research.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Krishan M Rai
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
9
|
Eini O, Schumann N, Niessen M, Varrelmann M. Targeted mutagenesis in plants using Beet curly top virus for efficient delivery of CRISPR/Cas12a components. N Biotechnol 2021; 67:1-11. [PMID: 34896246 DOI: 10.1016/j.nbt.2021.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Genome editing using CRISPR/Cas is rapidly being developed for gene targeting in eukaryotes including plants. However, gene targeting by homology-directed DNA recombination (HDR) is an infrequent event compared to the dominant DNA repair by non-homologous end-joining. Another bottleneck is the ineffective delivery of CRISPR/Cas components into plant cells. To overcome these constraints, here a geminiviral replicon from Beet curly top virus (BCTV) has been produced with a wide host range and high DNA accumulation capacity for efficient delivery of CRISPR/Cas12a components into plant cells. Initially, a BCTV replicon was prepared after removing the virion sense genes from an infectious full-length clone for agrobacterium mediated infection. This replicon expressed a green fluorescent protein (GFP) marker gene at a high level compared to T-DNA binary vector. In transient assay, the BCTV replicon produced a higher rate of mutagenesis and HDR in the GFP transgene in Nicotiana benthamiana through efficient delivery of CRISPR/Cas12a components compared to the cognate T-DNA control. This was through a range of complete or partial HDR for conversion of GFP into YFP after exchange of a single amino acid (Thr224Tyr) in the target gene. In addition, induced mutagenesis and HDR in the target gene were heritable. Thus, the BCTV replicon provides a new tool for efficient delivery of CRISPR/Cas12a components that could be used in a wide range of dicotyledonous plants. The established GFP to YFP system and the GFP mutant line produced also enable further optimization and understanding of HDR in plants via CRISPR/Cas12a system using geminiviral replicons.
Collapse
Affiliation(s)
- Omid Eini
- Department of Plant Protection, University of Zanjan, 313, Zanjan, Iran; Department of Phytopathology, Institute for Sugar Beet Research, 37079, Göttingen, Germany.
| | | | | | - Mark Varrelmann
- Department of Phytopathology, Institute for Sugar Beet Research, 37079, Göttingen, Germany
| |
Collapse
|
10
|
Hendrix B, Hoffer P, Sanders R, Schwartz S, Zheng W, Eads B, Taylor D, Deikman J. Systemic GFP silencing is associated with high transgene expression in Nicotiana benthamiana. PLoS One 2021; 16:e0245422. [PMID: 33720987 PMCID: PMC7959375 DOI: 10.1371/journal.pone.0245422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
Gene silencing in plants using topical dsRNA is a new approach that has the potential to be a sustainable component of the agricultural production systems of the future. However, more research is needed to enable this technology as an economical and efficacious supplement to current crop protection practices. Systemic gene silencing is one key enabling aspect. The objective of this research was to better understand topically-induced, systemic transgene silencing in Nicotiana benthamiana. A previous report details sequencing of the integration site of the Green Fluorescent Protein (GFP) transgene in the well-known N. benthamiana GFP16C event. This investigation revealed an inadvertent co-integration of part of a bacterial transposase in this line. To determine the effect of this transgene configuration on systemic silencing, new GFP transgenic lines with or without the transposase sequences were produced. GFP expression levels in the 19 single-copy events and three hemizygous GFP16C lines produced for this study ranged from 50-72% of the homozygous GFP16C line. GFP expression was equivalent to GFP16C in a two-copy event. Local GFP silencing was observed in all transgenic and GFP16C hemizygous lines after topical application of carbon dot-based formulations containing a GFP targeting dsRNA. The GFP16C-like systemic silencing phenotype was only observed in the two-copy line. The partial transposase had no impact on transgene expression level, local GFP silencing, small RNA abundance and distribution, or systemic GFP silencing in the transgenic lines. We conclude that high transgene expression level is a key enabler of topically-induced, systemic transgene silencing in N. benthamiana.
Collapse
Affiliation(s)
- Bill Hendrix
- Bayer Crop Science, Woodland, California, United States of America
| | - Paul Hoffer
- Bayer Crop Science, Woodland, California, United States of America
| | - Rick Sanders
- Bayer Crop Science, Woodland, California, United States of America
| | - Steve Schwartz
- Bayer Crop Science, Woodland, California, United States of America
| | - Wei Zheng
- Bayer Crop Science, Woodland, California, United States of America
| | - Brian Eads
- Bayer Crop Science, Chesterfield Parkway, St. Louis, Missouri, United States of America
| | - Danielle Taylor
- Bayer Crop Science, Chesterfield Parkway, St. Louis, Missouri, United States of America
| | - Jill Deikman
- Bayer Crop Science, Woodland, California, United States of America
| |
Collapse
|
11
|
Uslu VV, Bassler A, Krczal G, Wassenegger M. High-Pressure-Sprayed Double Stranded RNA Does Not Induce RNA Interference of a Reporter Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:534391. [PMID: 33391294 PMCID: PMC7773025 DOI: 10.3389/fpls.2020.534391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/18/2020] [Indexed: 05/10/2023]
Abstract
In plants, RNA interference (RNAi) is an effective defense mechanism against pathogens and pests. RNAi mainly involves the micro RNA and the small interfering RNA (siRNA) pathways. The latter pathway is generally based on the processing of long double stranded RNAs (dsRNA) into siRNAs by DICER-LIKE endonucleases (DCLs). SiRNAs are loaded onto ARGONAUTE proteins to constitute the RNA-induced silencing complex (RISC). Natural dsRNAs derive from transcription of inverted repeats or of specific RNA molecules that are transcribed by RNA-directed RNA polymerase 6 (RDR6). Moreover, replication of infecting viruses/viroids results in the production of dsRNA intermediates that can serve as substrates for DCLs. The high effectiveness of RNAi both locally and systemically implicated that plants could become resistant to pathogens, including viruses, through artificial activation of RNAi by topical exogenous application of dsRNA. The most preferable procedure to exploit RNAi would be to simply spray naked dsRNAs onto mature plants that are specific for the attacking pathogens serving as a substitute for pesticides applications. However, the plant cell wall is a difficult barrier to overcome and only few reports claim that topical application of naked dsRNA triggers RNAi in plants. Using a transgenic Nicotiana benthamiana line, we found that high-pressure-sprayed naked dsRNA did not induce silencing of a green fluorescence protein (GFP) reporter gene. Small RNA sequencing (sRNA-seq) of the samples from dsRNA sprayed leaves revealed that the dsRNA was, if at all, not efficiently processed into siRNAs indicating that the dsRNA was insufficiently taken up by plant cells.
Collapse
Affiliation(s)
- Veli Vural Uslu
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Alexandra Bassler
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Naim F, Shand K, Hayashi S, O’Brien M, McGree J, Johnson AAT, Dugdale B, Waterhouse PM. Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS One 2020; 15:e0227994. [PMID: 31978124 PMCID: PMC6980586 DOI: 10.1371/journal.pone.0227994] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Introducing a new trait into a crop through conventional breeding commonly takes decades, but recently developed genome sequence modification technology has the potential to accelerate this process. One of these new breeding technologies relies on an RNA-directed DNA nuclease (CRISPR/Cas9) to cut the genomic DNA, in vivo, to facilitate the deletion or insertion of sequences. This sequence specific targeting is determined by guide RNAs (gRNAs). However, choosing an optimum gRNA sequence has its challenges. Almost all current gRNA design tools for use in plants are based on data from experiments in animals, although many allow the use of plant genomes to identify potential off-target sites. Here, we examine the predictive uniformity and performance of eight different online gRNA-site tools. Unfortunately, there was little consensus among the rankings by the different algorithms, nor a statistically significant correlation between rankings and in vivo effectiveness. This suggests that important factors affecting gRNA performance and/or target site accessibility, in plants, are yet to be elucidated and incorporated into gRNA-site prediction tools.
Collapse
Affiliation(s)
- Fatima Naim
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Kylie Shand
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Satomi Hayashi
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin O’Brien
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - James McGree
- School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Benjamin Dugdale
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter M. Waterhouse
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Gao Q, Xu WY, Yan T, Fang XD, Cao Q, Zhang ZJ, Ding ZH, Wang Y, Wang XB. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. THE NEW PHYTOLOGIST 2019; 223:2120-2133. [PMID: 31059138 DOI: 10.1111/nph.15889] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/28/2019] [Indexed: 05/19/2023]
Abstract
Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid β-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Cody WB, Scholthof HB. Plant Virus Vectors 3.0: Transitioning into Synthetic Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:211-230. [PMID: 31185187 DOI: 10.1146/annurev-phyto-082718-100301] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant viruses were first implemented as heterologous gene expression vectors more than three decades ago. Since then, the methodology for their use has varied, but we propose it was the merging of technologies with virology tools, which occurred in three defined steps discussed here, that has driven viral vector applications to date. The first was the advent of molecular biology and reverse genetics, which enabled the cloning and manipulation of viral genomes to express genes of interest (vectors 1.0). The second stems from the discovery of RNA silencing and the development of high-throughput sequencing technologies that allowed the convenient and widespread use of virus-induced gene silencing (vectors 2.0). Here, we briefly review the events that led to these applications, but this treatise mainly concentrates on the emerging versatility of gene-editing tools, which has enabled the emergence of virus-delivered genetic queries for functional genomics and virology (vectors 3.0).
Collapse
Affiliation(s)
- Will B Cody
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA;
- Shriram Center for Biological and Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
15
|
Jiang J, Ma J, Liu B, Wang Y. Combining a Simple Method for DNA/RNA/Protein Co-Purification and Arabidopsis Protoplast Assay to Facilitate Viroid Research. Viruses 2019; 11:v11040324. [PMID: 30987196 PMCID: PMC6521142 DOI: 10.3390/v11040324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Plant–viroid interactions represent a valuable model for delineating structure–function relationships of noncoding RNAs. For various functional studies, it is desirable to minimize sample variations by using DNA, RNA, and proteins co-purified from the same samples. Currently, most of the co-purification protocols rely on TRI Reagent (Trizol as a common representative) and require protein precipitation and dissolving steps, which render difficulties in experimental handling and high-throughput analyses. Here, we established a simple and robust method to minimize the precipitation steps and yield ready-to-use RNA and protein in solutions. This method can be applied to samples in small quantities, such as protoplasts. Given the ease and the robustness of this new method, it will have broad applications in virology and other disciplines in molecular biology.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
16
|
Philips JG, Dudley KJ, Waterhouse PM, Hellens RP. The Rapid Methylation of T-DNAs Upon Agrobacterium Inoculation in Plant Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:312. [PMID: 30930927 PMCID: PMC6428780 DOI: 10.3389/fpls.2019.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 05/10/2023]
Abstract
Agrobacterium tumefaciens has been foundational in the development of transgenic plants for both agricultural biotechnology and plant molecular research. However, the transformation efficiency and level of transgene expression obtained for any given construct can be highly variable. These inefficiencies often require screening of many lines to find one with consistent and heritable transgene expression. Transcriptional gene silencing is known to affect transgene expression, and is associated with DNA methylation, especially of cytosines in symmetric CG and CHG contexts. While the specificity, heritability and silencing-associated effects of DNA methylation of transgene sequences have been analyzed in many stably transformed plants, the methylation status of transgene sequences in the T-DNA during the transformation process has not been well-studied. Here we used agro-infiltration of the eGFP reporter gene in Nicotiana benthamiana leaves driven by either an AtEF1α-A4 or a CaMV-35S promoter to study early T-DNA methylation patterns of these promoter sequences. The T-DNA was examined by amplicon sequencing following sodium bisulfite treatment using three different sequencing platforms: Sanger sequencing, Ion Torrent PGM, and the Illumina MiSeq. Rapid DNA methylation was detectable in each promoter region just 2-3 days post-infiltration and the levels continued to rapidly accumulate over the first week, then steadily up to 21 days later. Cytosines in an asymmetric context (CHH) were the most heavily and rapidly methylated. This suggests that early T-DNA methylation may be important in determining the epigenetic and transcriptional fate of integrated transgenes. The Illumina MiSeq platform was the most sensitive and robust way of detecting and following the methylation profiles of the T-DNA promoters. The utility of the methods was then used to show a subtle but significant difference in promoter methylation during intron-mediated enhancement. In addition, the method was able to detect an increase in promoter methylation when the eGFP reporter gene was targeted by siRNAs generated by co-infiltration of a hairpin RNAi construct.
Collapse
Affiliation(s)
- Joshua G. Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Joshua G. Philips,
| | - Kevin J. Dudley
- Institute for Future Environments, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
18
|
An Insight into T-DNA Integration Events in Medicago sativa. Int J Mol Sci 2017; 18:ijms18091951. [PMID: 28895894 PMCID: PMC5618600 DOI: 10.3390/ijms18091951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanisms of transferred DNA (T-DNA) integration into the plant genome are still not completely understood. A large number of integration events have been analyzed in different species, shedding light on the molecular mechanisms involved, and on the frequent transfer of vector sequences outside the T-DNA borders, the so-called vector backbone (VB) sequences. In this work, we characterized 46 transgenic alfalfa (Medicago sativa L.) plants (events), generated in previous works, for the presence of VB tracts, and sequenced several T-DNA/genomic DNA (gDNA) junctions. We observed that about 29% of the transgenic events contained VB sequences, within the range reported in other species. Sequence analysis of the T-DNA/gDNA junctions evidenced larger deletions at LBs compared to RBs and insertions probably originated by different integration mechanisms. Overall, our findings in alfalfa are consistent with those in other plant species. This work extends the knowledge on the molecular events of T-DNA integration and can help to design better transformation protocols for alfalfa.
Collapse
|