1
|
Nan D, Rao C, Tang Z, Yang W, Wu P, Chen J, Xia Y, Yan J, Liu W, Zhang Z, Hu Z, Chen H, Liao Y, Mao X, Liu X, Zou Q, Li Q. Burkholderia pseudomallei BipD modulates host mitophagy to evade killing. Nat Commun 2024; 15:4740. [PMID: 38834545 PMCID: PMC11150414 DOI: 10.1038/s41467-024-48824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.
Collapse
Affiliation(s)
- Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenbo Yang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai Chen
- Sanya People's Hospital, Sanya, China
| | - Yaling Liao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells. BIOLOGY 2022; 11:biology11101439. [PMID: 36290346 PMCID: PMC9598235 DOI: 10.3390/biology11101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Burkholderia pseudomallei is a pathogenic bacterium that causes human melioidosis, which is associated with a high mortality rate. However, the underlying mechanisms of B. pseudomallei pathogenesis are largely unknown. In this study, we examined the infection of human neuronal SH-Sy5y cells by several clinically relevant B. pseudomallei strains. We found that all tested B. pseudomallei strains can invade SH-Sy5y cells, undergo intracellular replication, cause actin-tail formation, and form multinucleated giant cells. Additionally, a deletion mutant of B. pseudomallei cycle-inhibiting factor (cif) was constructed that exhibited reduced invasion in SH-Sy5y cells. Complementation of cif restored invasion of the B. pseudomallei cif-deleted mutant. Our findings enhance understanding of B. pseudomallei pathogenicity in terms of the virulence factor Cif and demonstrate the function of Cif in neurological melioidosis. This may eventually lead to the discovery of novel targets for treatment and a strategy to control the disease.
Collapse
|
3
|
Yimthin T, Cliff JM, Phunpang R, Ekchariyawat P, Kaewarpai T, Lee JS, Eckold C, Andrada M, Thiansukhon E, Tanwisaid K, Chuananont S, Morakot C, Sangsa N, Silakun W, Chayangsu S, Buasi N, Day N, Lertmemongkolchai G, Chantratita W, Eoin West T, Chantratita N. Blood transcriptomics to characterize key biological pathways and identify biomarkers for predicting mortality in melioidosis. Emerg Microbes Infect 2021; 10:8-18. [PMID: 33256556 PMCID: PMC7832033 DOI: 10.1080/22221751.2020.1858176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, Burkholderia pseudomallei. The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls. Transcriptomic profiles of patients who did not survive to 28 days were compared with patients who survived and healthy controls, showing 65 genes were significantly up-regulated and 218 were down-regulated in non-survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. Down-regulated genes were hematopoietic cell lineage, adaptive immune system and lymphocyte activation pathways. RT-qPCR was performed for 28 genes in a validation set of 60 melioidosis patients and 20 healthy controls, confirming differential expression. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased significantly over 28 days (P < 0.05). These findings augment our understanding of this severe infection, showing expression levels of specific genes are potential biomarkers to predict melioidosis outcomes.
Collapse
Affiliation(s)
- Thatcha Yimthin
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Jacqueline Margaret Cliff
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Rungnapa Phunpang
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Peeraya Ekchariyawat
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand.,Faculty of Public Health, Department of Microbiology, Mahidol University, Bangkok, Thailand
| | - Taniya Kaewarpai
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Ji-Sook Lee
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Clare Eckold
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Megan Andrada
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | | | | | - Noppol Buasi
- Department of Medicine, Sisaket Hospital, Sisaket, Thailand
| | - Nicholas Day
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ganjana Lertmemongkolchai
- Faculty of Associated Medical Science, Department of Clinical Immunology, Khon Kaen University, Khon Kaen, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Faculty of Medicine Ramathibodi Hospital, Center for Medical Genomics, Mahidol University, Bangkok, Thailand
| | - T Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Narisara Chantratita
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Burkholderia pseudomallei pathogenesis and survival in different niches. Biochem Soc Trans 2020; 48:569-579. [PMID: 32167134 DOI: 10.1042/bst20190836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023]
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease of the tropics with high clinical mortality rates. To date, no vaccines are approved for melioidosis and current treatment relies on antibiotics. Conversely, common misdiagnosis and high pathogenicity of Bp hamper efforts to fight melioidosis. This bacterium can be isolated from a wide range of niches such as waterlogged fields, stagnant water bodies, salt water bodies and from human and animal clinical specimens. Although extensive studies have been undertaken to elucidate pathogenesis mechanisms of Bp, little is known about how a harmless soil bacterium adapts to different environmental conditions, in particular, the shift to a human host to become a highly virulent pathogen. The bacterium has a large genome encoding an armory of factors that assist the pathogen in surviving under stressful conditions and assuming its role as a deadly intracellular pathogen. This review presents an overview of what is currently known about how the pathogen adapts to different environments. With in-depth understanding of Bp adaptation and survival, more effective therapies for melioidosis can be developed by targeting related genes or proteins that play a major role in the bacteria's survival.
Collapse
|
5
|
Liu L, Zhang J, Gu M, Li G, Ni J, Fan M. Antitumor Effect of Cycle Inhibiting Factor Expression in Colon Cancer via Salmonella VNP20009. Anticancer Agents Med Chem 2020; 20:1722-1727. [PMID: 32324525 DOI: 10.2174/1871520620666200423080622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/26/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Colon cancer is one of the major causes of morbidity and mortality worldwide. Cycle inhibiting factors (Cifs) have been shown to deamidate Nedd8, resulting in cell cycle arrest. OBJECTIVE To determine the antitumor effect of Cifs on colon cancer by using attenuated Salmonella typhimurium VNP20009. METHODS The VNP-SOPE2-cif and VNP-SOPE2-cif-C/A plasmids were transfected into attenuated Salmonella typhimurium VNP20009. The efficiency and specificity of the Cif promoter were validated in colon cancer SW480 cell lines. Western blotting was subsequently performed to evaluate cell cycle regulators, including P21, P27 and Wee1. In vivo, the antitumor effect of VNP20009 was evaluated in a colon cancer xenograft model. RESULTS Firstly, VNP-SOPE2-cif and VNP-SOPE2-cif-C/A were selectively expressed both in the bacterial and colon cancer cells. Cif expression in SW480 cells via the VNP tumor-targeted expression system induced the accumulation of Wee1, p21 and p27 expression. Moreover, tumor growth was significantly inhibited in the mice with VNP-SOPE2-cif compared to the mice with VNP with the empty construct. CONCLUSION These results suggest that Cif gene delivered by VNP20009 is a promising approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Liang Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingqiang Gu
- Department of General Surgery, Shandong Province Qianfoshan Hospital, 274200, Shandong, China
| | - Guichao Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Liu L, Ni J, Zhang J, He X. Construction and characterization of regulated cycle inhibiting factors induced upon Tet-On system in human colon cancer cell lines. Anticancer Drugs 2018; 29:854-860. [PMID: 29923895 DOI: 10.1097/cad.0000000000000654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A previous study has proven that cycle inhibiting factors (Cifs) inhibit Cullin E3 ubiquitin ligases, resulting in cell cycle arrest. More importantly, Cifs are also involved in cancer progression by deamidating Nedd8. Here we aimed to explore a novel insight into the treatment implications of Cifs in colon cancers by Tet-on system. The anticancer activity of Cif by doxycycline induction was investigated in the colon cell lines based upon Tet-On system. The expression of Cif in the colon cancer cells was determined by western blot. Furthermore, the cell viability and flow cytometry analysis were respectively performed to evaluate the cell proliferation and survival of colon cells. More importantly, the p21 and p27 levels were also evaluated after the induction of Cif with Tet-On system. Multiple clones of colon cancer cells for doxycycline-regulated Cif expression were constructed for maintenance purposes including HCT116 and SW480 cell lines. The result of western blot displayed good inducibility of expressing Cif in the cell lines. The clones with Cif preserved their transformed phenotype compared with the control group (clones with GFP or with Cif), in terms of the inhibition of cancer cell proliferation and survival. Furthermore, western blot analysis showed that p27 and p21 were accumulated in the clones with Cif, compared with the colon cancer cell lines with GFP or with Cif. Using the Tet-On system, we developed an efficient approach toward generation of colon cancer cells induced with Cif. These engineered colons tightly controlled Cif expression in vitro, which is a good inducible model system for cancer treatment.
Collapse
Affiliation(s)
- Liang Liu
- Departments of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Departments of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junhua Zhang
- Departments of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinhong He
- Interventional Radiology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ng MY, Gan YH, Hagen T. Characterisation of cellular effects of Burkholderia pseudomallei cycle inhibiting factor (Cif). Biol Open 2018; 7:bio.028225. [PMID: 29848489 PMCID: PMC6078346 DOI: 10.1242/bio.028225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cycle inhibiting factors (Cifs) are type III secretion system effectors produced by some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Through their deamidase activity, Cifs inhibit the activity of Cullin RING E3 ubiquitin ligases (CRL). CRL inhibition induces the accumulation of cell cycle inhibitors p21 and p27, thereby leading to host cell cycle arrest. However, whether Cif exerts additional effects on host cells that are important in bacterial pathogenesis is currently poorly understood. In this study, we found that Cif exerts a bimodal effect on NF-κB signalling. Cif increases basal NF-κB activity. This effect is dependent on Cif-mediated activation of ERK MAPK. On the other hand, Cif inhibits NF-κB activation by TNFα and Burkholderia thailandensis infection. This inhibitory effect on NF-κB activity is partially mediated by Cif-dependent inhibition of CRLs. We also found that Cif only has a modest effect in stimulating the intracellular replication of the B. pseudomallei surrogate, B. thailandensis. The observed Cif-dependent stimulation of B. thailandensis intracellular replication was not, or was only partially, due to CRL inhibition. Furthermore, the increased B. thailandensis replication induced by Cif was independent of ERK MAPK activation. Our findings suggest that Cif likely exerts additional cellular effects through novel targets. Summary: Cycle inhibiting factor (Cif) is a Burkholderia pseudomallei virulence factor and is shown to exert both Cullin RING E3 ligase dependent and independent effects on host cells.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
8
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|