1
|
Mern DS, Thomé C. Collagen II enrichment through scAAV6-RNAi-mediated inhibition of matrix-metalloproteinases 3 and 13 in degenerative nucleus-pulposus cells degenerative disc disease and biological treatment strategies. Exp Biol Med (Maywood) 2024; 249:10048. [PMID: 39286594 PMCID: PMC11402661 DOI: 10.3389/ebm.2024.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Intervertebral disc (IVD) degeneration damaging the extracellular matrix (ECM) of IVDs is the main cause of spine-associated disorders. Degenerative disc disease (DDD) is a multifaceted disorder, where environmental factors, inflammatory cytokines and catabolic enzymes act together. DDD starts typically due to imbalance between ECM biosynthesis and degradation within IVDs, especially through unbalanced degradation of aggrecan and collagen II in nucleus pulposus (NP). Current treatment approaches are primarily based on conservative or surgical therapies, which are insufficient for biological regeneration. The disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) and matrix metalloproteinases (MMPs) are the key proteolytic enzymes for degradation of aggrecan and collagens. Previously, high expression levels of ADAMTS4, ADAMTS5, MMP3 and MMP13, which are accompanied with low levels of aggrecan and collagen II, were demonstrated in degenerative human NP cells. Moreover, self-complementary adeno-associated virus type 6 (scAAV6) mediated inhibitions of ADAMTS4 and ADAMTS5 by RNA-interference (RNAi) could specifically enhance aggrecan level. Thus, MMPs are apparently the main degrading enzymes of collagen II in NP. Furthermore, scAAV6-mediated inhibitions of MMP3 and MMP13 have not yet been investigated. Therefore, we attempted to enhance the level of collagen II in degenerative NP cells by scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13. MRI was used to determine preoperative grading of IVD degeneration in patients. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting MMP3 or MMP13; and analysed by fluorescence microscopy, FACS, MTT assay, RT-qPCR, ELISA and western blotting. scAAV6-shRNRs have no impact on cell viability and proliferation, despite high transduction efficiencies (98.6%) and transduction units (1383 TU/Cell). Combined knockdown of MMP3 (92.8%) and MMP13 (90.9%) resulted in highest enhancement of collagen II (143.2%), whereby treatment effects were significant over 56 days (p < 0.001). Conclusively, scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13 help to progress less immunogenic and enduring biological treatments in DDD.
Collapse
|
2
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
3
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhou Y, Zhao Z, Yan L, Yang J. MiR-485-3p promotes proliferation of osteoarthritis chondrocytes and inhibits apoptosis via Notch2 and the NF-κB pathway. Immunopharmacol Immunotoxicol 2021; 43:370-379. [PMID: 33961511 DOI: 10.1080/08923973.2021.1918150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Osteoarthritis (OA) is one of the leading causes of disability worldwide. microRNAs (miRs) has been shown to be involved in multiple pathological processes during OA. But the possible mechanism of miR-485-3p in OA remains unclear. OBJECTIVE This study was designed to identify the effect of miR-485-3p on OA. METHODS miR-485-3p expression in the cartilage of OA patients and healthy controls was detected. OA cell model was established by lipopolysaccharide (LPS). miR-485-3p expression in SW1353 and CHON-001 chondrocytes treated with LPS was detected. After overexpressing miR-485-3p in chondrocytes, cell proliferation, and apoptosis were detected. Apoptosis-, extracellular matrix (ECM)-, inflammatory-, and oxidative stress-related factors were detected. The target gene of miR-485-3p was predicted by online software and verified by dual luciferase reporter gene assay. Notch2 was intervened in CHON-001 chondrocytes to detect proliferation and apoptosis. Finally, the phosphorylation of NF-κB pathway-related proteins was detected. RESULTS miR-485-3p expression was low in OA patients and LPS-treated chondrocytes. After LPS treatment, the proliferation of SW1353 and CHON-001 chondrocytes was decreased, and apoptosis was increased. The above outcomes were reversed after overexpressing miR-485-3p. Overexpressing miR-485-3p also reduced ECM degradation, inflammation and oxidative stress in chondrocytes. miR-485-3p could target Notch2. After LPS treatment, the NF-κB pathway was activated, but miR-485-3p overexpression inhibited the pathway. Notch2 inhibition promoted proliferation and inhibited apoptosis of LPS-treated CHON-001 chondrocytes, and inhibited the NF-κB pathway. CONCLUSION Overexpression of miR-485-3p inhibited Notch2 and the NF-κB pathway, and promoted proliferation of OA chondrocytes and inhibited apoptosis.
Collapse
Affiliation(s)
- Yunping Zhou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Yang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Kim CH, Oliver C, Dar H, Drissi H, Presciutti SM. AAV6 as an effective gene delivery vector for prolonged transgene expression in intervertebral disc cells in vivo. Genes Dis 2020; 9:1074-1085. [PMID: 35685478 PMCID: PMC9170577 DOI: 10.1016/j.gendis.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Intervertebral disc degeneration is the main contributor to low back pain, now the leading cause of disability worldwide. Gene transfer, either in a therapeutic attempt or in basic research to understand the mechanisms of disc degeneration, is a fascinating and promising tool to manipulate the complex physiology of the disc. Viral vectors based on the adeno-associated virus (AAV) have emerged as powerful transgene delivery vehicles yet a systematic investigation into their respective tropism, transduction efficiency, and relative toxicity have not yet been performed in the disc in vivo. Herein, we used in vivo bioluminescence imaging to systematically compare multiple AAV serotypes, injection volumes, titers, promoters, and luciferase reporters to determine which result in high transduction efficiency of murine nucleus pulposus (NP) cells in vivo. We find that AAV6 using a CAG promoter to drive transgene expression, delivered into the NP of murine caudal discs at a titer of 1011 GC/mL, provides excellent transduction efficiency/kinetics and low toxicity in vivo. We also show, for the first time, that the transduction of NP cells can be significantly boosted in vivo by the use of small cell permeabilization peptides. Finally, to our knowledge, we are the first to demonstrate the use of optical tissue clearing and three-dimensional lightsheet microscopy in the disc, which was used to visualize fine details of tissue and cell architecture in whole intact discs following AAV6 delivery. Taken together, these data will contribute to the success of using AAV-mediated gene delivery for basic and translational studies of the IVD.
Collapse
Affiliation(s)
- Chi Heon Kim
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Atlanta Veteran Affairs Medical Center, Decatur, GA 30030, USA
| | - Colleen Oliver
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Atlanta Veteran Affairs Medical Center, Decatur, GA 30030, USA
| | - Hamid Dar
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Atlanta Veteran Affairs Medical Center, Decatur, GA 30030, USA
- Corresponding author. Emory Orthopaedics and Spine Center, 59 Executive Park S NE, Atlanta, GA 30329, USA.
| | - Steven M. Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Atlanta Veteran Affairs Medical Center, Decatur, GA 30030, USA
- Corresponding author. Emory Orthopaedics and Spine Center, 59 Executive Park S NE, Atlanta, GA 30329, USA.
| |
Collapse
|
6
|
Chen S, Luo M, Kou H, Shang G, Ji Y, Liu H. A Review of Gene Therapy Delivery Systems for Intervertebral Disc Degeneration. Curr Pharm Biotechnol 2020; 21:194-205. [PMID: 31749423 DOI: 10.2174/1389201020666191024171618] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
Abstract
Background: :
Intervertebral Disc (IVD) degeneration is a major public health concern, and
gene therapy seems a promising approach to delay or even reverse IVD degeneration. However, the
delivery system used to transfer exogenous genes into intervertebral disc cells remains a challenge.
Methods::
The MEDLINE, Web of Science, and Scopus databases were searched for English-language
articles related to gene therapy for IVD degeneration articles from 1999 to May 2019. The keywords
included “gene therapy” AND “intervertebral disc”. The history of the development of different delivery
systems was analysed, and the latest developments in viral and non-viral vectors for IVD degeneration
treatment were reviewed.
Results: :
Gene therapy delivery systems for IVD degeneration are divided into two broad categories:
viral and non-viral vectors. The most commonly used viral vectors are adenovirus, adeno-associated
virus (AAV), and lentivirus. Enthusiasm for the use of adenovirus vectors has gradually declined and
has been replaced by a preference for lentivirus and AAV vectors. New technologies, such as RNAi
and CRISPR, have further enhanced the advantage of viral vectors. Liposomes are the classic non-viral
vector, and their successors, polyplex micelles and exosomes, have more potential for use in gene therapy
for IVD degeneration.
Conclusion::
Lentivirus and AAV are the conventional viral vectors used in gene therapy for IVD degeneration,
and the new technologies RNAi and CRISPR have further enhanced their advantages. Nonviral
vectors, such as polyplex micelles and exosomes, are promising gene therapy vectors for IVD degeneration.
Collapse
Affiliation(s)
- Songfeng Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ming Luo
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongwei Kou
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guowei Shang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhui Ji
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
7
|
Beierfuß A, Hunjadi M, Ritsch A, Kremser C, Thomé C, Mern DS. APOE-knockout in rabbits causes loss of cells in nucleus pulposus and enhances the levels of inflammatory catabolic cytokines damaging the intervertebral disc matrix. PLoS One 2019; 14:e0225527. [PMID: 31751427 PMCID: PMC6871866 DOI: 10.1371/journal.pone.0225527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Rabbits with naturally high levels of cholesterol ester transfer protein (CETP), unlike rodents, have become an interesting animal model for the study of lipid metabolism and atherosclerosis, as they have similarities to humans in lipid metabolism, cardiovascular physiology and susceptibility to develop atherosclerosis. Rodents, such as mice, are not prone to atherosclerosis as they lack the mass and activity of CETP, as a key player in lipoprotein metabolism. Recently, APOE-knockout in rabbits has been shown to promote atherosclerosis and associated premature IVD degeneration that mimic the symptoms of atherosclerosis and structural changes of IVDs in humans. Here we examined whether APOE-knockout promoted IVD degeneration in rabbits is associated with imbalanced inflammatory catabolic activities, as the underlying problem of biological deterioration that mimic the symptoms of advanced IVD degeneration in humans. We analysed in lumbar nucleus pulposus (NP) of APOE-knockout rabbits the cell viabilities and the intracellular levels of inflammatory, catabolic, anti-catabolic and anabolic proteins derogating IVD matrix. Grades of IVD degeneration were evaluated by magnetic resonance imaging. NP cells were isolated from homozygous APOE-knockout and wild-type New Zealand White rabbits of similar age. Three-dimensional cell culture with low-glucose was completed in alginate hydrogel. Cell proliferation and intracellular levels of target proteins were examined by MTT and ELISA assays. Alike human NP cells of different disc degeneration grades, NP cells of APOE-knockout and wild-type rabbits showed significantly different in vivo cell population densities (p<0.0001) and similar in vitro proliferation rates. Furthermore, they showed differences in overexpression of selective inflammatory and catabolic proteins (p<0.0001) similar to those found in human NP cells of different disc degeneration grades, such as IL-1β, TNF-α, ADAMTS-4, ADAMTS-5 and MMP-3. This study showed that premature IVD degeneration in APOE-knockout rabbits was promoted by the accumulation of selective inflammatory catabolic factors that enhanced imbalances between catabolic and anabolic factors mimicking the symptoms of advanced IVD degeneration in humans. Thus, APOE-knockout rabbits could be used as a promising model for therapeutic approaches of degenerative disc disorders.
Collapse
Affiliation(s)
- Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
8
|
Qin C, Lv Y, Zhao H, Yang B, Zhang P. MicroRNA-149 Suppresses Inflammation in Nucleus Pulposus Cells of Intervertebral Discs by Regulating MyD88. Med Sci Monit 2019; 25:4892-4900. [PMID: 31263091 PMCID: PMC6618342 DOI: 10.12659/msm.915858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is associated with low back and neck pain, but the mechanisms underlying its pathogenesis are unclear. In this study, we explored the function of microRNA-149 (miR-149) in inflammatory response mediated by lipopolysaccharide (LPS) in nucleus pulposus (NP) cells. Material/Methods Quantitative real-time PCR was used to detect miRNA and mRNA levels, while Western blotting was utilized to determine protein levels. ELISA was used to examine chemokine production. The correlation between miR-149 and MyD88 was assessed by reporter assay. Apoptosis was examined by flow cytometry. Results miR-149 expression was significantly decreased after LPS exposure in NP cells. Overexpression of miR-149 reversed LPS-induced inhibition in aggrecan and collagen II expression and attenuated LPS-mediated promotion in the levels of MMP3, ADAMTS4, and inflammatory cytokines. Moreover, we found that miR-149 exerted its function by targeting MyD88 in NP cells. Conclusions miR-149 can inhibit the inflammatory response mediated by LPS in NP cells, and might be a potential target for the treatment of IDD.
Collapse
Affiliation(s)
- Chuqiang Qin
- Department of Spine Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yuming Lv
- Department of Spine Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Hongpu Zhao
- Department of Spine Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Bo Yang
- Department of Spine Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Ping Zhang
- Department of Spine Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
9
|
Liu J, Jiang T, He M, Fang D, Shen C, Le Y, He M, Zhao J, Zheng L. Andrographolide prevents human nucleus pulposus cells against degeneration by inhibiting the NF-κB pathway. J Cell Physiol 2019; 234:9631-9639. [PMID: 30370694 DOI: 10.1002/jcp.27650] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 01/02/2023]
Abstract
Intervertebral disc degeneration (IDD) is among the most common spinal disorders, pathologically characterized by excessive cell apoptosis and production of proinflammatory factors. Pharmacological targeting of nucleus pulposus (NP) degeneration may hold promise in IDD therapy, but it is limited by adverse side effects and nonspecificity of drugs. In this study, we used a natural compound, andrographolide (ANDRO), which has been widely used to intervene inflammatory and apoptotic diseases in the investigation of NP degeneration based on IDD-patients-derived NP cells by lipopolysaccharide (LPS) treatment for the preservation of degeneration. The results showed that LPS maintained the degeneration status of NP cells as evidenced by a high apoptosis rate and the expression of degenerative and inflammatory mediators after LPS treatment. ANDRO reversed the effects of LPS-caused degeneration of NP cells and maintained the phenotype of NP cells, as demonstrated by flow cytometry, degenerative mediators (ADAMTS4 and ADAMTS5), inflammatory factors (COX2, PGE2, MMP-13, and MMP-3), biomarkers of NP cells (SOX9, ACAN, and COL2A1) expressions, and glycosaminoglycan secretion. We also found the involvement of the nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) pathway in ANDRO treatment, indicating that ANDRO prevented the LPS-preserved degeneration of NP cells by inhibiting the NF-κB pathway. This study may provide a reference for clinic medication of IDD therapy.
Collapse
Affiliation(s)
- Jianwei Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Mingwei He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Depeng Fang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Chong Shen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yiguan Le
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Maolin He
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway. Oncotarget 2018; 8:47665-47674. [PMID: 28512264 PMCID: PMC5564596 DOI: 10.18632/oncotarget.17509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.
Collapse
|
11
|
Sheng B, Yuan Y, Liu X, Zhang Y, Liu H, Shen X, Liu B, Chang L. Protective effect of estrogen against intervertebral disc degeneration is attenuated by miR-221 through targeting estrogen receptor α. Acta Biochim Biophys Sin (Shanghai) 2018. [PMID: 29529124 DOI: 10.1093/abbs/gmy017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of cartilaginous endplates (CEP) is an important etiologic aspect of intervertebral disc degeneration (IDD) because the endplate has nutritional and biomechanical functions in maintaining proper disc health. In this study, we investigated the regulatory effects of estrogen on degenerated human CEP cells and the involvement of miR-221 in these effects. Normal and degenerated human CEP tissues were collected from patients with idiopathic scoliosis and IDD, respectively. CEP cells were isolated from these tissues. Polymerase chain reaction (PCR) and western blot analysis were performed to detect the expression of specific genes and proteins, respectively. Apoptosis and cell cycle were analyzed by flow cytometry. The results showed that the levels of aggrecan, collagen II, TGF-β and estrogen receptor α (ERα) were decreased in degenerated CEP tissues, while the levels of MMP-3, adamts-5, IL-1β, TNF-α, IL-6, and miR-221 were increased. Treatment of degenerated CEP cells with 17beta-estradiol (E2) increased the expressions of aggrecan and collagen II, as well as the secretion of TGF-β, but decreased IL-6 secretion. Moreover, E2 inhibited the apoptosis, resumed cell-cycle progression in G0/G1 phase, and improved the cell viability. These data indicate that estrogen has protective effect against degeneration of CEP cells. Furthermore, ERα was confirmed to be a target of miR-221 by the luciferase assay. The synthetic miR-221 mimics or knockdown of ERα attenuated the protective effects of E2, but miR-221 inhibitors promoted the protective effects of E2. These results suggest that miR-221 may impair the protective effect of estrogen in degenerated CEP cells through targeting ERα. This study reveals an important mechanism underlying the degeneration of CEP cells.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Youchao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiangyang Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Yi Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Hongzhe Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiongjie Shen
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Bin Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Lei Chang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| |
Collapse
|