1
|
Gonet M, Krowarsch D, Schubert J, Tabiś A, Bania J. Stability and Resistance to Proteolysis of Enterotoxins SEC and SEL Produced by Staphylococcus epidermidis and Staphylococcus aureus. Foodborne Pathog Dis 2023; 20:32-37. [PMID: 36622956 DOI: 10.1089/fpd.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The only staphylococcal enterotoxins produced by Staphylococcus epidermidis include SECepi and SELepi, whereas Staphylococcus aureus produces orthologous SECs and SEL having different sequences. We compared S. epidermidis and S. aureus SECs and SELs in terms of resistance to proteolysis and both, thermal and chemical stability. We show that SECepi and SELepi produced by S. epidermidis have similar resistance to proteolysis if compared with their respective orthologues produced by S. aureus. Studied S. epidermidis and S. aureus SEC variants incubated with pepsin at pH 2.0 were found to be more resistant to proteolysis than SELs. SELs turned out to be more resistant than SECs to proteolysis with trypsin at pH 8.0. SECepi was found to be more resistant to thermal denaturation if compared with its S. aureus orthologues. The S. epidermidis and S. aureus SEC variants were found to have higher thermal stability than SELs. Our data indicate that, due to their high stability, the enterotoxins SECepi and SELepi produced in food by S. epidermidis may pose a food safety risk comparable with that posed by S. aureus enterotoxins.
Collapse
Affiliation(s)
- Magdalena Gonet
- Department of Food Hygiene and Consumer Health Protection, the Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, the Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, the Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
2
|
Berry SC, Triplett OA, Yu LR, Hart ME, Jackson LS, Tolleson WH. Microcalorimetric Investigations of Reversible Staphylococcal Enterotoxin Unfolding. Toxins (Basel) 2022; 14:toxins14080554. [PMID: 36006217 PMCID: PMC9414061 DOI: 10.3390/toxins14080554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcal food poisoning (SFP) is a common food-borne illness often associated with contamination during food handling. The genes for Staphylococcal enterotoxin (SE) isoforms SEA and SEB are frequently detected in human nasal Staphylococcus aureus isolates and these toxins are commonly associated with SFP. Past studies described the resistance of preformed SE proteins to heat inactivation and their reactivation upon cooling in foods. Full thermodynamic analyses for these processes have not been reported, however. The thermal stabilities of SEA, SEB, and SEH and reversibility of unfolding in simple buffers were investigated at pH 4.5 and pH 6.8 using differential scanning calorimetry (DSC). SEA and SEB unfolding was irreversible at pH 6.8 and at least partially reversible at pH 4.5 while SEH unfolding was irreversible at pH 4.5 and reversible at pH 6.8. Additional studies showed maximum refolding for SEB at pH 3.5–4.0 and diminished refolding at pH 4.5 with increasing ionic strength. SE-stimulated secretion of interferon-gamma by human peripheral blood mononuclear cells was used to assess residual SE biological activity following heat treatments using conditions matching those used for DSC studies. The biological activities of SEB and SEH exhibited greater resistance to heat inactivation than that of SEA. The residual activities of heat-treated SEB and SEH were measurable but diminished further in the presence of reconstituted nonfat dry milk adjusted to pH 4.5 or pH 6.8. To different extents, the pH and ionic strengths typical for foods influenced the thermal stabilities of SEA, SEB, and SEH and their potentials to renature spontaneously after heat treatments.
Collapse
Affiliation(s)
- Susan C. Berry
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Odbert A. Triplett
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Li-Rong Yu
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Mark E. Hart
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Lauren S. Jackson
- Division of Food Processing Science & Technology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 6502 S. Archer Rd., Bedford Park, IL 60501, USA
| | - William H. Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
- Correspondence: or ; Tel.: +1870-543-7645
| |
Collapse
|
3
|
Chakraborty N, Srinivasan S, Yang R, Miller SA, Gautam A, Detwiler LJ, Carney BC, Alkhalil A, Moffatt LT, Jett M, Shupp JW, Hammamieh R. Comparison of Transcriptional Signatures of Three Staphylococcal Superantigenic Toxins in Human Melanocytes. Biomedicines 2022; 10:biomedicines10061402. [PMID: 35740423 PMCID: PMC9219963 DOI: 10.3390/biomedicines10061402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus, a gram-positive bacterium, causes toxic shock through the production of superantigenic toxins (sAgs) known as Staphylococcal enterotoxins (SE), serotypes A-J (SEA, SEB, etc.), and toxic shock syndrome toxin-1 (TSST-1). The chronology of host transcriptomic events that characterizes the response to the pathogenesis of superantigenic toxicity remains uncertain. The focus of this study was to elucidate time-resolved host responses to three toxins of the superantigenic family, namely SEA, SEB, and TSST-1. Due to the evolving critical role of melanocytes in the host’s immune response against environmental harmful elements, we investigated herein the transcriptomic responses of melanocytes after treatment with 200 ng/mL of SEA, SEB, or TSST-1 for 0.5, 2, 6, 12, 24, or 48 h. Functional analysis indicated that each of these three toxins induced a specific transcriptional pattern. In particular, the time-resolved transcriptional modulations due to SEB exposure were very distinct from those induced by SEA and TSST-1. The three superantigens share some similarities in the mechanisms underlying apoptosis, innate immunity, and other biological processes. Superantigen-specific signatures were determined for the functional dynamics related to necrosis, cytokine production, and acute-phase response. These differentially regulated networks can be targeted for therapeutic intervention and marked as the distinguishing factors for the three sAgs.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- Correspondence: ; Tel.: +1-301-452-8940 or +1-301-319-7363
| | - Seshamalini Srinivasan
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Leanne J. Detwiler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Abdulnaser Alkhalil
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
| | - Lauren T. Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
- The Burn Center, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| |
Collapse
|
4
|
Enterotoxin- and Antibiotic-Resistance-Encoding Genes Are Present in Both Coagulase-Positive and Coagulase-Negative Foodborne Staphylococcus Strains. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food poisoning by staphylococcal enterotoxins (SE) is a major cause of foodborne illness, often associated with coagulase-positive staphylococci (CPS). The increase in the number of methicillin-resistant Staphylococcus aureus (MRSA) strains is another major problem associated with CPS. However, reports of the association of SE and methicillin-resistant Staphylococcus with coagulase-negative staphylococci (CNS) are beginning to re-emerge. In this context, the aim of this study is to investigate the presence of staphylococcal enterotoxin genes and to characterize the phenotypic and genotypic antimicrobial resistance in 66 isolates of Staphylococcus spp. (47 CNS and 19 CPS) recovered from ready-to-eat (RTE) street food sold in Maputo, Mozambique. Seven virulence genes encoding SE (sea, seb, sec, sed and see) and two toxins (hlb and sak) were screened by multiplex PCR (MPCR). Antimicrobial resistance against 12 antibiotics was evaluated by the disk diffusion method. The presence of genes encoding resistance to penicillin, methicillin, vancomycin and erythromycin (blaZ, mecA, vancA, vancB, ermA, ermB and ermC) were also screened by PCR. At least one of the seven virulence genes assessed in this study was detected in 57.9% and 51% of CPS and CNS isolates, respectively. In CPS isolates, the most frequent gene was hlb (47.4%), followed by sec (15.8%) and sea, seb and sed genes with 5.3% each. In CNS isolates, the most frequent gene was sec (36.2%) followed by sak (17%), hlb (14.9%), sed (12.8%) and seb (6.4%). Five of the twelve CPS in which virulence genes were detected were also antibiotic-resistant. All the CNS isolates harboring virulence genes (n = 27, 57.4%) were antimicrobial-resistant. The prevalence of multidrug resistance was higher (59.6%) in CNS than in CPS (26.3%) isolates. Regarding the presence of antibiotic-resistance genes, blaZ (penicillin-resistant) was the most frequent in both CPS (42.1%) and CNS (87.2%), followed by the mecA (encoding methicillin resistance) and vancA genes (vancomycin-resistant), which represented 36.8% and 31.6% in CPS isolates and 46.8% in CNS isolates, respectively. The prevalence of vancomycin-resistant staphylococci has been increasing worldwide and, to our knowledge, this is the first study to report the occurrence of vancomycin-resistant staphylococci in Mozambique. These results emphasize the need to investigate CNS isolates in parallel with CPS, as both constitute public health hazards, given their potential to produce SE and spread antimicrobial resistance genes.
Collapse
|
5
|
Radwan MH, Alaidaroos BA, Jastaniah SD, Abu el-naga MN, El-Gohary EGE, Barakat EM, ElShafie AM, Abdou MA, Mostafa NG, El-Saadony MT, Momen SA. Evaluation of antibacterial activity induced by Staphylococcus aureus and Ent A in the hemolymph of Spodoptera littoralis. Saudi J Biol Sci 2022; 29:2892-2903. [PMID: 35531219 PMCID: PMC9073143 DOI: 10.1016/j.sjbs.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
The problem of antibiotic resistance considers one of the most dangerous challenges facing the medical field. So, it is necessary to find substitutions to conventional antibiotics. Antimicrobial peptides (AMPs) are a bio-functional derivative that have been observed as one of the important solutions to such upcoming crisis. Owing to their role as the first line of defense against bacteria, fungi, and viruses. This study was conducted to induce the immune response of Spodoptera littoralis larvae by inoculation of sub lethal doses of Staphylococcus aureus and its enterotoxin. Since Staphylococcal enterotoxin A (SEA) considers the major causative agents of Staphylococcal food poisoning, our study oriented to purify and characterize this toxin to provoke its role in yielding AMPs with broad spectrum antimicrobial activity. A great fluctuation was recorded in the biochemical properties of immunized hemolymph not only in the total protein content but also protein banding pattern. Protein bands of ∼22 kDa (attacin-like) and ∼15 kDa (lysozyme-like) were found to be common between the AMPs induced as a result of both treatments. While protein bands of molecular weight ∼70 kDa (phenoloxidase-like) and ∼14 kDa (gloverin-like) were found specific for SEA treatment. Chromatographic analysis using HPLC for the induced AMPs showed different types of amino acids appeared with differences in their quantities and velocities. These peptides exhibited noticeable antimicrobial activity against certain Gram-positive and Gram-negative bacteria. In conclusion, the antimicrobial potential of the antimicrobial peptides (AMP) induced in the larval hemolymph of S. littoralis will be a promising molecule for the development of new therapeutic alternatives.
Collapse
|
6
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Vidic J, Vizzini P, Manzano M, Kavanaugh D, Ramarao N, Zivkovic M, Radonic V, Knezevic N, Giouroudi I, Gadjanski I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1100. [PMID: 30836707 PMCID: PMC6427207 DOI: 10.3390/s19051100] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.
Collapse
Affiliation(s)
- Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Priya Vizzini
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Devon Kavanaugh
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Milica Zivkovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11000 Belgrade, Serbia.
| | - Vasa Radonic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nikola Knezevic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ioanna Giouroudi
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ivana Gadjanski
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
8
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Regenthal P, Hansen JS, André I, Lindkvist-Petersson K. Correction: Thermal stability and structural changes in bacterial toxins responsible for food poisoning. PLoS One 2017; 12:e0175989. [PMID: 28403221 PMCID: PMC5389844 DOI: 10.1371/journal.pone.0175989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0172445.].
Collapse
|