1
|
Naseema Rasheed R, Suhara Beevy S. Reliable reference gene selection for quantitative real-time PCR (qRT-PCR) in floral developmental phases of dioecious species Coccinia grandis. Gene 2024; 900:148143. [PMID: 38195051 DOI: 10.1016/j.gene.2024.148143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
The flowering process is intricate and regulated by a combination of external and internal factors. Delving into gene expression research has the potential to enhance our comprehension of the molecular foundations underlying floral development. Because of its accuracy, specificity, reproducibility, and efficiency, qRT-PCR is now a biological research tool for studying expression pattern of desired genes. The gene expression investigations using qRT-PCR required a reference gene with relatively uniform expression levels in multiple biological samples, including different developmental stages, tissues, and experimental conditions. In this study, experimental sets offloral and floral organ development in the male and female plants of C. grandis, a dioecious Cucurbitaceae species, qRT-PCR profiling was performed using six reference genes as internal control with B-class floral identity gene, PISTILLATA (PI). To analyse the data, algorithms such as geNorm, NormFinder, RefFinder, and BestKeeper were used to pick out the best internal controls from a group of candidates. The optimal reference gene for qRT-PCR studies with floral samples has been recommended as β-actin combined with β-tubulin. This is the first report on the validation of candidate reference genes across flower developmental stages in the dioecious species C. grandis, which will provide basic data for research on the molecular mechanism underlying flower development in this species and lay the groundwork for similar studies in other related species.
Collapse
Affiliation(s)
| | - S Suhara Beevy
- Department of Botany, University of Kerala, Kariavattom Campus, Kerala, India
| |
Collapse
|
2
|
Jadid N, Rosidah NLA, Ramadani MRN, Prasetyowati I, Sa’adah NN, Widodo AF, Oktafitria D. Plastid DNA Barcoding and RtActin cDNA Fragment Isolation of Reutealis Trisperma: A Promising Bioresource for Biodiesel Production. Bioinform Biol Insights 2023; 17:11779322231182768. [PMID: 37360051 PMCID: PMC10286179 DOI: 10.1177/11779322231182768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Reutealis trisperma belonging to the family Euphorbiaceae is currently used for biodiesel production, and rapid development in plant-based biofuel production has led to its increasing demand. However, massive utilization of bio-industrial plants has led to conservation issues. Moreover, genetic information on R trisperma is still limited, which is crucial for developmental, physiological, and molecular studies. Studying gene expression is essential to explain plant physiological processes. Nonetheless, this technique requires sensitive and precise measurement of messenger RNA (mRNA). In addition, the presence of internal control genes is important to avoid bias. Therefore, collecting and preserving genetic data for R trisperma is indispensable. In this study, we aimed to evaluate the application of plastid loci, rbcL, and matK, to the DNA barcode of R trisperma for use in conservation programs. In addition, we isolated and cloned the RtActin (RtACT) gene fragment for use in gene expression studies. Sequence information was analyzed in silico by comparison with other Euphorbiaceae plants. For actin fragment isolation, reverse-transcription polymerase chain reaction was used. Molecular cloning of RtActin was performed using the pTA2 plasmid before sequencing. We successfully isolated and cloned 592 and 840 bp of RtrbcL and RtmatK fragment genes, respectively. The RtrbcL barcoding marker, rather than the RtmatK plastidial marker, provided discriminative molecular phylogenetic data for R Trisperma. We also isolated 986 bp of RtACT gene fragments. Our phylogenetic analysis demonstrated that R trisperma is closely related to the Vernicia fordii Actin gene (97% identity). Our results suggest that RtrbcL could be further developed and used as a barcoding marker for R trisperma. Moreover, the RtACT gene could be further investigated for use in gene expression studies of plant.
Collapse
Affiliation(s)
- Nurul Jadid
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | | | | | - Indah Prasetyowati
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | - Noor Nailis Sa’adah
- Department of Biology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
| | | | - Dwi Oktafitria
- Department of Biology, Universitas PGRI Ronggolawe, Tuban, Indonesia
| |
Collapse
|
3
|
Wang Y, Zhang YQ, Wu ZW, Fang T, Wang F, Zhao H, Du ZQ, Yang CX. Selection of reference genes for RT-qPCR analysis in developing chicken embryonic ovary. Mol Biol Rep 2023; 50:3379-3387. [PMID: 36729208 DOI: 10.1007/s11033-023-08280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Normalization of the expression profiling of target genes, in a tissue-specific manner and under different experimental conditions, requires stably expressed gene(s) to be used as internal reference(s). However, to study the molecular regulation of oocyte meiosis initiation during ovary development in chicken embryos, stable reference gene(s) still need to be compared and confirmed. METHODS AND RESULTS Six candidate genes previously used as internal references for the chicken embryo (Actb, Cvh, Dazl, Eef1a, Gapdh and Rpl15) were chosen, and their expression profiles in left ovaries dissected at five chicken embryonic days (E12.5, E15.5, E17.5, E18.5 and E20.5) were evaluated, respectively. Separately, GeNorm, NormFinder, BestKeeper and Comparative ΔCt methods were used to assess the stability of candidate reference genes, and all results were combined to give the final rank by RefFinder. All methods identified that Eef1a and Rpl15 were the two most stable internal reference genes, whereas Cvh is the most unstable one. Moreover, expression levels of three marker genes for chicken oocyte meiosis entry (Stra8, Scp3 and Dmc1) were normalized, based on Eef1a, Rpl15, or their combinations, respectively. CONCLUSION Our findings provide the most suitable internal reference genes (Eef1a and Rpl15), to investigate further molecular regulation of ovary development and oocyte meiosis initiation in chicken embryos.
Collapse
Affiliation(s)
- Yi Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Yu-Qing Zhang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Ting Fang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Fang Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Han Zhao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
4
|
Fan H, He Q, Dong Y, Xu W, Lou Y, Hua X, Xu T. Selection of suitable candidate genes for mRNA expression normalization in bulbil development of Pinellia ternata. Sci Rep 2022; 12:8849. [PMID: 35614175 PMCID: PMC9133075 DOI: 10.1038/s41598-022-12782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pinellia ternata (Thunb.) Breit. (Abbreviated as P. ternata). It is a commonly prescribed Chinese traditional medicinal herb for the treatment of phlegm, cough, and morning sick. Bulbil reproduction is one of the main reproductive methods of P. ternata. The accurate quantification of gene expression patterns associated with bulbil development might be helpful to explore the molecular mechanism involved in P. ternata reproduction. Quantitative real-time PCR was the most preferred method for expression profile and function analysis of mRNA. However, the reference genes in different tissues of P. ternata in different periods of bulbil development have not been studied in detail. In present study, the expression stability of eight candidate reference genes were determined with programs: geNorm, NormFinder, BestKeeper, and refFinder. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the top- rated reference gene in all samples of P. ternata, while different combinations of reference gene proved to be the most stable depending on development stage and tissue type. Furthermore, the reliability of GAPDH expression was verified by six P. ternata related genes in hormone and nutrient biosynthesis pathways, and the expression profiles of these genes were agreed with the results of RNA-seq digital gene expression analysis. These results can contribute to studies of gene expression patterns and functional analysis of P. ternata involved in bulbil development.
Collapse
Affiliation(s)
- Haoyu Fan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuling He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Yiheng Dong
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenxin Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanlin Lou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuejun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
5
|
Wu Y, Zhang C, Yang H, Lyu L, Li W, Wu W. Selection and Validation of Candidate Reference Genes for Gene Expression Analysis by RT-qPCR in Rubus. Int J Mol Sci 2021; 22:ijms221910533. [PMID: 34638877 PMCID: PMC8508773 DOI: 10.3390/ijms221910533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of effective and stable reference genes, studies on functional genes in Rubus, a genus of economically important small berry crops, have been greatly limited. To select the best internal reference genes of different types, we selected four representative cultivars of blackberry and raspberry (red raspberry, yellow raspberry, and black raspberry) as the research material and used RT-qPCR technology combined with three internal stability analysis software programs (geNorm, NormFinder, and BestKeeper) to analyze 12 candidate reference genes for the stability of their expression. The number of most suitable internal reference genes for different cultivars, tissues, and fruit developmental stages of Rubus was calculated by geNorm software to be two. Based on the results obtained with the three software programs, the most stable genes in the different cultivars were RuEEF1A and Ru18S. Finally, to validate the reliability of selected reference genes, the expression pattern of the RuCYP73A gene was analyzed, and the results highlighted the importance of appropriate reference gene selection. RuEEF1A and Ru18S were screened as reference genes for their relatively stable expression, providing a reference for the further study of key functional genes in blackberry and raspberry and an effective tool for the analysis of differential gene expression.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| |
Collapse
|
6
|
Soni P, Shivhare R, Kaur A, Bansal S, Sonah H, Deshmukh R, Giri J, Lata C, Ram H. Reference gene identification for gene expression analysis in rice under different metal stress. J Biotechnol 2021; 332:83-93. [PMID: 33794279 DOI: 10.1016/j.jbiotec.2021.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Real-time quantitative polymerase chain reaction (RT-qPCR) is the most common approach to quantify changes in gene expression. Appropriate internal reference genes are essential for normalization of data of RT-qPCR. In the present study, we identified suitable reference genes for analysis of gene expression in rice seedlings subjected to different heavy metal stresses such as deficiencies of iron and zinc and toxicities of cobalt, cadmium and nickel. First, from publically available RNA-Seq data we identified 10 candidate genes having stable expression. We also included commonly used house-keeping gene OsUBQ5 (Ubiquitin 5) in our analysis. Expression stability of all the 11 genes was determined by two independent tools, NormFinder and geNorm. Our results show that selected candidate reference genes have higher stability in their expression compared to that of OsUBQ5. Genes with locus ID LOC_Os03g16690, encoding an oxysterol-binding protein (OsOBP) and LOC_Os01g56580, encoding Casein Kinase_1a.3 (OsCK1a.3) were identified to be the most stably expressed reference genes under most of the conditions tested. Finally, the study reveals that it is better to use a specific reference gene for a specific heavy metal stress condition rather than using a common reference gene for multiple heavy metal stress conditions. The reference genes identified here would be very useful for gene expression studies under heavy metal stresses in rice.
Collapse
Affiliation(s)
- Praveen Soni
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Radha Shivhare
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Amandeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Sakshi Bansal
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, New Delhi, 110067, India.
| | - Hasthi Ram
- National Agri-Food Biotechnology Institute, Mohali, 140308, India; National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
7
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Mol Biol Rep 2020; 47:2951-2962. [PMID: 32215779 DOI: 10.1007/s11033-020-05385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Passion fruit (Passiflora edulis), an important tropical and subtropical fruit, has a high edible and medicinal value. Stem rot disease is one of the most important diseases of passion fruit. An effective way for control and prevention of this disease is to identify the genes associated with resistance to this disease. Quantitative real-time PCR (RT-qPCR) has mainly been widely applied to detect gene expression because of its simplicity, fastness, low cost and high sensitivity. One of the requirements for RT-qPCR is the availability of suitable reference genes for normalization of gene expression. However, currently, no Passiflora edulis reference genes have been identified andthus it has hindered the gene expression studies in this plant. The present study aimed to address this issue. We analyzed sixteen candidate reference genes, including nine common (GAPDH, UBQ, ACT1, ACT2, EF-1α-1, EF-1α-2, TUA, NADP, and GBP) and seven novel genes (C13615, C24590, C27182, C10445, C21209, C22199, and C22526), in different tissues (stem, leaf, flower and fruit) of two accessions under stem rot condition. We calculated the expression stability in twenty-four samples using the ΔCt, GeNorm, NormFinder, BestKeeper and RefFinder. The results showed that both C21209 and EF-1α-2 were sufficient to normalize gene expression under stem rot, whereas the commonly used reference genes, GAPDH and UBQ, were the least stable ones. The expression patterns of PeUFC under stem rot condition normalized by stable and unstable reference genes indicated the suitability of using the optimal reference genes. To our knowledge, this is the first systematic study of reference genes in Passiflora edulis, which identified a number of reliable reference genes suitable for gene expression studies in Passiflora edulis by RT-qPCR.
Collapse
|
9
|
Sarwar MB, Ahmad Z, Anicet BA, Sajid M, Rashid B, Hassan S, Ahmed M, Husnain T. Identification and validation of superior housekeeping gene(s) for qRT-PCR data normalization in Agave sisalana (a CAM-plant) under abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:567-584. [PMID: 32205931 PMCID: PMC7078421 DOI: 10.1007/s12298-020-00760-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 05/24/2023]
Abstract
The adaptive mechanisms in Agave species enable them to survive and exhibit remarkable tolerance to abiotic stresses. Quantitative real-time PCR is a highly reliable approach for validation of targeted differential gene expression. However, stable housekeeping gene(s) is prerequisite for accurate normalization of expression data by qRT-PCR. Till date, no systematic validation study for candidate housekeeping gene identification or evaluation has been carried-out in Agave species. A total of 17 candidate housekeeping genes were identified from the de novo assembled transcriptomic data of A. sisalana and rigorously analyzed for expression stability assessment under drought, heat, cold and NaCl stress. Different statistical algorithms like geNorm, BestKeeper, NormFinder, and RefFinder on expression data determined the superior housekeeping gene(s) for accurate normalization of the gene of interest (GOI). The comprehensive evaluation revealed the β-Tub 4, WIN-1 and CYC-A as the most stable, while EEF1α, GAPDH, and UBE2 were ranked as the least stable genes in pooled samples. Pairwise combination by geNorm showed that up to two housekeeping genes would be adequate to normalize the GOI expression data precisely. Validation of identified most and least stable housekeeping genes was carried-out by normalizing the expression data of AsHSP20 under abiotic stress conditions. Copy number of AsHSP20 gene supports the reliability of the genes used for normalization. This is the first report on the screening and validation of the housekeeping genes under abiotic stress condition in A. sisalana that would assist to understand the stress tolerance mechanisms by novel gene identification and accurate validation.
Collapse
Affiliation(s)
- Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Batcho Agossa Anicet
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Moon Sajid
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Bushra Rashid
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sameera Hassan
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Mukhtar Ahmed
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Du W, Hu F, Yuan S, Liu C. Selection of reference genes for quantitative real-time PCR analysis of photosynthesis-related genes expression in Lilium regale. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1497-1506. [PMID: 31736551 PMCID: PMC6825105 DOI: 10.1007/s12298-019-00707-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
Photosynthesis is closely related to the growth of plants. A stable reference gene is fundamental for studies of the molecular mechanism of photosynthesis in Lilium regale. Therefore, it is very important to select a suitable reference gene for qRT-PCR analysis on genes of photosynthetic system, chlorophyll biosynthetic pathway and chloroplast development in Lilium regale. Three kinds of tissues, leaves and bulbs (abnormal leaves) of tissue culture plantlets and cotyledons of seedlings of the wild-type and mutant Lilium regale were selected as materials for qRT-PCR. Six housekeeping genes were selected as candidate genes from transcriptome sequencing data of the wild-type and yellow seedling lethal mutant of Lilium regale. Finally, the expression stability of six candidate reference genes was analyzed using geNorm, NormFinder, and BestKeeper software, the comparative ∆Ct method, and the RefFinder program. The results showed that LrActin2 was the best reference gene for qRT-PCR analysis of photosynthesis-related genes expression in leaves of tissue culture plantlets and seedlings of Lilium regale. This study provided useful data for further research on molecular mechanism of photosynthesis in the Lilium.
Collapse
Affiliation(s)
- Wenkai Du
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037 China
| | - Fengrong Hu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037 China
| | - Suxia Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chun Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
11
|
Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Siberian Wild Rye ( Elymus sibiricus) under Different Experimental Conditions. Genes (Basel) 2019; 10:E451. [PMID: 31200580 PMCID: PMC6627066 DOI: 10.3390/genes10060451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
Elymus sibiricus, which is a perennial and self-pollinated grass, is the typical species of the genus Elymus, which plays an important role in forage production and ecological restoration. No reports have, so far, systematically described the selection of optimal reference genes for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analysis in E. sibiricus. The goals of this study were to evaluate the expression stability of 13 candidate reference genes in different experimental conditions, and to determine the appropriate reference genes for gene expression analysis in E. sibiricus. Five methods including Delta Ct (ΔCt), BestKeeper, NormFinder, geNorm, and RefFinder were used to assess the expression stability of 13 potential reference genes. The results of the RefFinder analysis showed that TBP2 and HIS3 were the most stable reference genes in different genotypes. TUA2 and PP2A had the most stable expression in different developmental stages. TBP2 and PP2A were suitable reference genes in different tissues. Under salt stress, ACT2 and TBP2 were identified as the most stable reference genes. ACT2 and TUA2 showed the most stability under heat stress. For cold stress, PP2A and ACT2 presented the highest degree of expression stability. DNAJ and U2AF were considered as the most stable reference genes under osmotic stress. The optimal reference genes were selected to investigate the expression pattern of target gene CSLE6 in different conditions. This study provides suitable reference genes for further gene expression analysis using RT-qPCR in E. sibiricus.
Collapse
Affiliation(s)
- Junchao Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xinxuan Yu
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yongqiang Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
12
|
Zhou L, Niu J, Quan S. Identification of appropriate reference genes for RT-qPCR analysis in Juglans regia L. PLoS One 2018; 13:e0209424. [PMID: 30562379 PMCID: PMC6298729 DOI: 10.1371/journal.pone.0209424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023] Open
Abstract
Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular adopted technique to detect gene expression, and the selection of appropriate reference genes is crucial for data normalization. In the present study, seven candidate reference genes were screened to evaluate their expression stability in various flower buds, leaf buds, tissues and cultivars of the English walnut (Juglans regia L.) based on four algorithms (geNorm, Normfinder, Bestkeeper and RefFinder). The results demonstrated that TUA, EF1 and TUB were appropriate reference genes for flower buds at different stages of female flower buds differentiation; TUB and 18S rRNA were best for leaf buds at different stages of female flower buds differentiation; TUB and TUA were suitable for different cultivars; and ACT2, 18S rRNA and GAPDH were useful for different tissues. Moreover, the expression of ACT was not stable among different flower buds, leaf buds and cultivars. The stability of reference genes were confirmed through the analysis of the expression of SPL18 gene. These results will contribute to a reliable normalization of gene expression in J. regia.
Collapse
Affiliation(s)
- Li Zhou
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, P.R. China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, P.R. China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, P.R. China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, P.R. China
- * E-mail:
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, P.R. China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, P.R. China
| |
Collapse
|
13
|
Wan Q, Chen S, Shan Z, Yang Z, Chen L, Zhang C, Yuan S, Hao Q, Zhang X, Qiu D, Chen H, Zhou X. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLoS One 2017; 12:e0189405. [PMID: 29236756 PMCID: PMC5728501 DOI: 10.1371/journal.pone.0189405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022] Open
Abstract
Real-time quantitative reverse transcription PCR is a sensitive and widely used technique to quantify gene expression. To achieve a reliable result, appropriate reference genes are highly required for normalization of transcripts in different samples. In this study, 9 previously published reference genes (60S, Fbox, ELF1A, ELF1B, ACT11, TUA5, UBC4, G6PD, CYP2) of soybean [Glycine max (L.) Merr.] were selected. The expression stability of the 9 genes was evaluated under conditions of biotic stress caused by infection with soybean mosaic virus, nitrogen stress, across different cultivars and developmental stages. ΔCt and geNorm algorithms were used to evaluate and rank the expression stability of the 9 reference genes. Results obtained from two algorithms showed high consistency. Moreover, results of pairwise variation showed that two reference genes were sufficient to normalize the expression levels of target genes under each experimental setting. For virus infection, ELF1A and ELF1B were the most stable reference genes for accurate normalization. For different developmental stages, Fbox and G6PD had the highest expression stability between two soybean cultivars (Tanlong No. 1 and Tanlong No. 2). ELF1B and ACT11 were identified as the most stably expressed reference genes both under nitrogen stress and among different cultivars. The results showed that none of the candidate reference genes were uniformly expressed at different conditions, and selecting appropriate reference genes was pivotal for gene expression studies with particular condition and tissue. The most stable combination of genes identified in this study will help to achieve more accurate and reliable results in a wide variety of samples in soybean.
Collapse
Affiliation(s)
- Qiao Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Shuilian Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Zhihui Shan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Zhonglu Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Limiao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chanjuan Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Songli Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Qinnan Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaojuan Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Dezhen Qiu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Haifeng Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xinan Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
14
|
Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation. PLoS One 2017; 12:e0183470. [PMID: 28817728 PMCID: PMC5560574 DOI: 10.1371/journal.pone.0183470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/04/2017] [Indexed: 01/05/2023] Open
Abstract
Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not.
Collapse
|
15
|
Correction: Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant. PLoS One 2017; 12:e0177039. [PMID: 28459843 PMCID: PMC5411048 DOI: 10.1371/journal.pone.0177039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Li W, Zhang L, Zhang Y, Wang G, Song D, Zhang Y. Selection and Validation of Appropriate Reference Genes for Quantitative Real-Time PCR Normalization in Staminate and Perfect Flowers of Andromonoecious Taihangia rupestris. FRONTIERS IN PLANT SCIENCE 2017; 8:729. [PMID: 28579993 PMCID: PMC5437146 DOI: 10.3389/fpls.2017.00729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/19/2017] [Indexed: 05/19/2023]
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used and powerful method for gene expression analysis due to its high sensitivity, specificity, and high throughput, and the accuracy of this approach depends on the stability of reference genes used for normalization. Taihangia rupestris Yu and Li (Rosaceae), an andromonoecious plant, produces both bisexual flowers and unisexual male flowers within the same individual. Using qRT-PCR technique, investigation of the gene expression profiling in staminate and perfect flowers would improve our understanding of the molecular mechanism in regulation of flower formation and sex differentiation in andromonoecious T. rupestris. To accurate normalize the gene expression level in Taihangia flower, 16 candidate reference genes, including 10 traditional housekeeping genes, and 6 newly stable genes, were selected based on transcriptome sequence data and previous studies. The expressions of these genes were assessed by qRT-PCR analysis in 51 samples, including 30 staminate and perfect flower samples across developmental stages and 21 different floral tissue samples from mature flowers. By using geNorm, NormFinder, BestKeeper, and comprehensive RefFinder algorithms, ADF3 combined with UFD1 were identified as the optimal reference genes for staminate flowers, while the combination of HIS3/ADF3 was the most accurate reference genes for perfect floral samples. For floral tissues, HIS3, UFD1, and TMP50 were the most suitable reference genes. Furthermore, two target genes, TruPI, and TruFBP24, involved in floral organ identity were selected to validate the most and least stable reference genes in staminate flowers, perfect flowers, and different floral tissues, indicating that the use of inappropriate reference genes for normalization will lead to the adverse results. The reference genes identified in this study will improve the accuracy of qRT-PCR quantification of target gene expression in andromonoecious T. rupestris flowers, and will facilitate the functional genomics studies on flower development and sex differentiation in the future.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Sciences, Changchun Normal UniversityChangchun, China
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
- *Correspondence: Weiguo Li
| | - Lihui Zhang
- College of Life Sciences, Changchun Normal UniversityChangchun, China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Dangyu Song
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Yanwen Zhang
- College of Life Sciences, Changchun Normal UniversityChangchun, China
- Yanwen Zhang
| |
Collapse
|