1
|
Dai R, Zhuo H, Chen Y, Zhang K, Dong Y, Chen C, Wang W. Retracted article: Mechanism of isosorbide dinitrate combined with exercise training rehabilitation to mobilize endothelial progenitor cells in patients with coronary heart disease. Bioengineered 2024; 15:2000258. [PMID: 34738489 PMCID: PMC10826619 DOI: 10.1080/21655979.2021.2000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Ruozhu Dai, Huilin Zhuo, Yangchun Chen, Kelian Zhang, Yongda Dong, Chengbo Chen and Wei Wang. Mechanism of isosorbide dinitrate combined with exercise training rehabilitation to mobilize endothelial progenitor cells in patients with coronary heart disease. Bioengineered. 2021 Nov. doi: 10.1080/21655979.2021.2000258.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| | - Huilin Zhuo
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| | - Yangchun Chen
- Shanghai Lung Hospital Affiliated to Tongji University, Shanghai, China
| | - Kelian Zhang
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| | - Yongda Dong
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| | - Chengbo Chen
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| | - Wei Wang
- Department of Cardiology, Quanzhou First Hospital, Quanzhou, Fujian Province,
China
| |
Collapse
|
2
|
Bulluck H, Paradies V, Barbato E, Baumbach A, Bøtker HE, Capodanno D, De Caterina R, Cavallini C, Davidson SM, Feldman DN, Ferdinandy P, Gili S, Gyöngyösi M, Kunadian V, Ooi SY, Madonna R, Marber M, Mehran R, Ndrepepa G, Perrino C, Schüpke S, Silvain J, Sluijter JPG, Tarantini G, Toth GG, Van Laake LW, von Birgelen C, Zeitouni M, Jaffe AS, Thygesen K, Hausenloy DJ. Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2021; 42:2630-2642. [PMID: 34059914 PMCID: PMC8282317 DOI: 10.1093/eurheartj/ehab271] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
A substantial number of chronic coronary syndrome (CCS) patients undergoing percutaneous coronary intervention (PCI) experience periprocedural myocardial injury or infarction. Accurate diagnosis of these PCI-related complications is required to guide further management given that their occurrence may be associated with increased risk of major adverse cardiac events (MACE). Due to lack of scientific data, the cut-off thresholds of post-PCI cardiac troponin (cTn) elevation used for defining periprocedural myocardial injury and infarction, have been selected based on expert consensus opinions, and their prognostic relevance remains unclear. In this Consensus Document from the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI), we recommend, whenever possible, the measurement of baseline (pre-PCI) cTn and post-PCI cTn values in all CCS patients undergoing PCI. We confirm the prognostic relevance of the post-PCI cTn elevation >5× 99th percentile URL threshold used to define type 4a myocardial infarction (MI). In the absence of periprocedural angiographic flow-limiting complications or electrocardiogram (ECG) and imaging evidence of new myocardial ischaemia, we propose the same post-PCI cTn cut-off threshold (>5× 99th percentile URL) be used to define prognostically relevant ‘major’ periprocedural myocardial injury. As both type 4a MI and major periprocedural myocardial injury are strong independent predictors of all-cause mortality at 1 year post-PCI, they may be used as quality metrics and surrogate endpoints for clinical trials. Further research is needed to evaluate treatment strategies for reducing the risk of major periprocedural myocardial injury, type 4a MI, and MACE in CCS patients undergoing PCI.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- Department of Cardiology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, NR4 7UY, UK.,Norwich Medical School, Bob Champion Research and Educational Building, Rosalind Franklin Road, University of East Anglia, Norwich Research Park. Norwich, Norfolk, NR4 7UQ, United Kingdom
| | - Valeria Paradies
- Cardiology Department, Maasstad Hospital, Maasstadweg 21, 3079 DZ Rotterdam, The Netherlands
| | - Emanuele Barbato
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 8013, Naples, Italy.,Cardiovascular Center Aalst OLV Hospital, Moorselbaan n. 164, 9300 Aalst, Belgium
| | - Andreas Baumbach
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, Barts Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK.,Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Via Santa Sofia 78, 95100 Catania, Italy
| | - Raffaele De Caterina
- Department of Pathology, Cardiology Division, University of Pisa, Lungarno Antonio Pacinotti, 43, 56124 Pisa, Italy.,University of Pisa, and Cardiology Division, Pisa University Hospital AND Fondazione VillaSerena per la Ricerca, Città Sant'Angelo, Pescara, Italy
| | - Claudio Cavallini
- Department of Cardiology, Santa Maria della Misericordia Hospital, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews London, WC1E 6HX, UK
| | - Dmitriy N Feldman
- Division of Cardiology, Weill Cornell Medical College, New York Presbyterian Hospital, 1414 York Ave, New York, NY 10021, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad tér 4, Budapest, 1089 Hungary.,Pharmahungary Group, Hajnóczy u. 6, Szeged, 6722 Hungary
| | - Sebastiano Gili
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Via Carlo Parea, 4, 20138 Milano MI, Italy
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, M4:146 4th Floor William Leech Building, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK.,Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiothoracic centre, High Heaton, Newcastle upon Tyne, NE7 7DN, UK
| | - Sze-Yuan Ooi
- Eastern Heart Clinic, Prince of Wales Hospital, Barker St, Randwick NSW 2031, Australia
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Lungarno Antonio Pacinotti, 43, 56124 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, 77060 Houston, TX, USA
| | - Michael Marber
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, St. Thomas' Hospital Campus, King's College London, Westminster Bridge Rd, London SE1 7EH, UK
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Clinical Trials Center, Cardiovascular Research Foundation, 1700 Broadway, New York, NY 10019, USA
| | - Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität, Lazarettstraße 36, 80636 München, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 8013, Naples, Italy
| | - Stefanie Schüpke
- Deutsches Herzzentrum München, Lazarettstr. 36, 80636 Munich, Germany
| | - Johanne Silvain
- Sorbonne Université, ACTION Study Group, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), INSERM UMRS, Paris 1166, France
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Giuseppe Tarantini
- Interventional Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2 - 35128 Padova, Italy
| | - Gabor G Toth
- University Heart Center Graz, Division of Cardiology, Department of Medicine, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3574 CX Utrecht, The Netherlands
| | - Clemens von Birgelen
- Department of Cardiology, Thoraxcentrum Twente, Medisch Spectum Twente, Koningstraat 1, 7512 KZ Enschede, The Netherlands.,Department of Health Technology and Services Research, Faculty BMS, Technical Medical Centre, University of Twente, Hallenweg 5, 7522 NH Enschede, The Netherlands
| | - Michel Zeitouni
- Sorbonne Université, ACTION Study Group, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), INSERM UMRS, Paris 1166, France
| | - Allan S Jaffe
- Departments of Cardiology and Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kristian Thygesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews London, WC1E 6HX, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, Singapore 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
3
|
Tripaldi R, Lanuti P, Simeone PG, Liani R, Bologna G, Ciotti S, Simeone P, Di Castelnuovo A, Marchisio M, Cipollone F, Santilli F. Endogenous PCSK9 may influence circulating CD45 neg/CD34 bright and CD45 neg/CD34 bright/CD146 neg cells in patients with type 2 diabetes mellitus. Sci Rep 2021; 11:9659. [PMID: 33958634 PMCID: PMC8102605 DOI: 10.1038/s41598-021-88941-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Protease proprotein convertase subtilisin/kexin type 9 (PCSK9) is a regulator of LDL cholesterol clearance and has been associated with cardiovascular risk. PCSK9 inhibitors increase in vivo circulating endothelial progenitor cells (EPCs), a subtype of immature cells involved in ongoing endothelial repair. We hypothesized that the effect of PCSK9 on vascular homeostasis may be mediated by EPCs in patients with or without type 2 diabetes mellitus (T2DM). Eighty-two patients (45 with, 37 without T2DM) at high cardiovascular risk were enrolled in this observational study. Statin treatment was associated with higher circulating levels of PCSK9 in patients with and without T2DM (p < 0.001 and p = 0.036) and with reduced CD45neg/CD34bright (total EPC compartment) (p = 0.016) and CD45neg/CD34bright/CD146neg (early EPC) (p = 0.040) only among patients with T2DM. In the whole group of patients, statin treatment was the only independent predictor of low number of CD45neg/CD34bright (β = - 0.230; p = 0.038, adjusted R2 = 0.041). Among T2DM patients, PCSK9 circulating levels were inversely related and predicted both the number of CD45neg/CD34bright (β = - 0.438; p = 0.003, adjusted R2 = 0.173), and CD45neg/CD34bright/CD146neg (β = - 0.458; p = 0.002, adjusted R2 = 0.191) independently of age, gender, BMI and statin treatment. In high-risk T2DM patients, high endogenous levels of PCSK9 may have a detrimental effect on EPCs by reducing the endothelial repair and worsening the progression of atherothrombosis.
Collapse
Affiliation(s)
- Romina Tripaldi
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Giustina Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Sonia Ciotti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | | | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy.
| |
Collapse
|
4
|
Niedzielski M, Broncel M, Gorzelak-Pabiś P, Woźniak E. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother 2020; 129:110388. [PMID: 32559626 DOI: 10.1016/j.biopha.2020.110388] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 12/25/2022] Open
Abstract
Statin therapy is the gold standard in the treatment of dyslipidemia. Understanding the mechanisms of action of these drugs provides an opportunity to define new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions. The present review indicates the existence of previously unknown therapeutic targets for statins, such as Krüppel-like Factor 2 (KLF-2), Cystathionine γ lyase (CSE) and the microRNA regulating eNOS activity and synthesis; nuclear PXR receptor and EB transcription factor regulating Inflammasome NLRP3 activity; the Dickkopf-related protein 1 (DKK-1), which inhibits the WNT signalling pathway; the peroxisome proliferator-activated receptor (PPAR-γ) in vascular smooth muscle cells (VSMCs), which regulates the cell cycle, and the ERK5-Nrf2 pathway, which reduces the level of harmful advanced glycation end-products (AGE) in VSMCs during diabetic vasculopathy. Importantly, our review includes a number of promising discoveries, specifically those related to the effects of miR-221, miR-222 and miR-27b on the structure, synthesis and activity of eNOS, such as microRNA-based therapies, which offer promise in future targeted therapies. In contrast to numerous experiments confirming the pleiotropic effect of statins, there is still insufficient evidence on the pleiotropic effect of ezetimibe, which goes beyond its basic inhibitory effect on intestinal cholesterol absorption. However, recent studies indicate that this effect is limited to inhibiting macrophage migration, decreasing VCAM-1 expression and reducing the levels of reactive oxygen species. Defining new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions and ensuring effective treatment of dyslipidemia and its associated cardiovascular complications requires a thorough understanding of both the mechanisms of action of these drugs and of atherosclerosis itself.
Collapse
Affiliation(s)
- Mateusz Niedzielski
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marlena Broncel
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Paulina Gorzelak-Pabiś
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Woźniak
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland.
| |
Collapse
|
5
|
Wang Y, Liu C, He X, Li Y, Zou Y. Effects of metoprolol, methyldopa, and nifedipine on endothelial progenitor cells in patients with gestational hypertension and preeclampsia. Clin Exp Pharmacol Physiol 2019; 46:302-312. [PMID: 30614608 DOI: 10.1111/1440-1681.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yangui Wang
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Cuizhong Liu
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Xin He
- Department of Obstetrics and GynaecologyHunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Yingzhao Li
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Yan Zou
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| |
Collapse
|
6
|
Counting circulating endothelial cells in allo-HSCT: an ad hoc designed polychromatic flowcytometry-based panel versus the CellSearch System. Sci Rep 2019; 9:87. [PMID: 30643152 PMCID: PMC6331628 DOI: 10.1038/s41598-018-36442-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Physio-pathologic interrelationships between endothelial layer and graft-versus-host disease (GVHD) have been described leading to assess the entity “endothelial GVHD” as the early step for clinical manifestations of acute GVHD. The availability of the CellSearch system has allowed us to monitor Circulating Endothelial Cells (CEC) changes in allogeneic hematopoietic stem cell transplantation (allo-HSCT) as useful tool to help clinicians in GVHD diagnostic definition. We have compared CEC counts generated by an ad hoc designed polychromatic-flowcytometry (PFC) Lyotube with those of the CellSearch system. CEC were counted in parallel at 5 timepoints in 50 patients with malignant hematologic disorders undergoing allo-HSCT (ClinicalTrials.gov, NCT02064972). Spearman rank correlation showed significant association between CEC values at all time points (p = 0.0001). The limits of agreement was demonstrated by Bland Altman plot analysis, showing bias not significant at T1, T3, T4, while at T2 and T5 resulted not estimable. Moreover, Passing Bablok regression analysis showed not significant differences between BD Lyotube and CellSearch system. We show that CEC counts, generated with either the CellSearch system or the PFC-based panel, have a superimposable kinetic in allo-HSCT patients and that both counting procedures hold the potential to enter clinical routine as a suitable tool to assist clinicians in GVHD diagnosis.
Collapse
|
7
|
Wei HJ, Liu L, Chen FL, Wang D, Wang L, Wang ZG, Jiang RC, Dong JF, Chen JL, Zhang JN. Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury. Neural Regen Res 2019; 14:984-990. [PMID: 30762009 PMCID: PMC6404487 DOI: 10.4103/1673-5374.250577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function. However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury, and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels (r = −0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China (approval No. 200501) in January 2015.
Collapse
Affiliation(s)
- Hui-Jie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang-Lian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin; Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zeng-Guang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jing-Fei Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jie-Li Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
8
|
Zhan S, Tang M, Liu F, Xia P, Shu M, Wu X. Ezetimibe for the prevention of cardiovascular disease and all-cause mortality events. Cochrane Database Syst Rev 2018; 11:CD012502. [PMID: 30480766 PMCID: PMC6516816 DOI: 10.1002/14651858.cd012502.pub2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains an important cause of mortality and morbidity, and high levels of blood cholesterol are thought to be the major modifiable risk factors for CVD. The use of statins is the preferred treatment strategy for the prevention of CVD, but some people at high-risk for CVD are intolerant to statin therapy or unable to achieve their treatment goals with the maximal recommended doses of statin. Ezetimibe is a selective cholesterol absorption inhibitor, whether it has a positive effect on CVD events remains uncertain. Results from clinical studies are inconsistent and a thorough evaluation of its efficacy and safety for the prevention of CVD and mortality is necessary. OBJECTIVES To assess the efficacy and safety of ezetimibe for the prevention of CVD and all-cause mortality. SEARCH METHODS We searched the CENTRAL, MEDLINE, Embase and Web of Science on 27 June 2018, and two clinical trial registry platforms on 11 July 2018. We checked reference lists from primary studies and review articles for additional studies. No language restrictions were applied. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared ezetimibe versus placebo or ezetimibe plus other lipid-modifying drugs versus other lipid-modifying drugs alone in adults, with or without CVD, and which had a follow-up of at least 12 months. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies for inclusion, extracted data, assessed risk of bias and contacted trialists to obtain missing data. We performed statistical analyses according to the Cochrane Handbook for Systematic Reviews of Interventions and used the GRADE to assess the quality of evidence. MAIN RESULTS We included 26 RCTs randomising 23,499 participants. All included studies assessed effects of ezetimibe plus other lipid-modifying drugs compared with other lipid-modifying drugs alone or plus placebo. Our findings were driven by the largest study (IMPROVE-IT), which had weights ranging from 41.5% to 98.4% in the different meta-analyses.Ezetimibe with statins probably reduces the risk of major adverse cardiovascular events compared with statins alone (risk ratio (RR) 0.94, 95% confidence interval (CI) 0.90 to 0.98; a decrease from 284/1000 to 267/1000, 95% CI 256 to 278; 21,727 participants; 10 studies; moderate-quality evidence). Trials reporting all-cause mortality used ezetimibe with statin or fenofibrate and found they have little or no effect on this outcome (RR 0.98, 95% CI 0.91 to 1.05; 21,222 participants; 8 studies; high-quality evidence). Adding ezetimibe to statins probably reduces the risk of non-fatal myocardial infarction (MI) (RR 0.88, 95% CI 0.81 to 0.95; a decrease from 105/1000 to 92/1000, 95% CI 85 to 100; 21,145 participants; 6 studies; moderate-quality evidence) and non-fatal stroke (RR 0.83, 95% CI 0.71 to 0.97; a decrease 32/1000 to 27/1000, 95% CI 23 to 31; 21,205 participants; 6 studies; moderate-quality evidence). Trials reporting cardiovascular mortality added ezetimibe to statin or fenofibrate, probably having little or no effect on this outcome (RR 1.00, 95% CI 0.89 to 1.12; 19457 participants; 6 studies; moderate-quality evidence). The need for coronary revascularisation might be reduced by adding ezetimibe to statin (RR 0.94, 95% CI 0.89 to 0.99; a decrease from 196/1000 to 184/1000, 95% 175 to 194; 21,323 participants; 7 studies); however, no difference in coronary revascularisation rate was observed when a sensitivity analysis was limited to studies with a low risk of bias.In terms of safety, adding ezetimibe to statins may make little or no difference in the risk of hepatopathy (RR 1.14, 95% CI 0.96 to 1.35; 20,687 participants; 4 studies; low-quality evidence). It is uncertain whether ezetimibe increase or decrease the risk of myopathy (RR 1.31, 95% CI 0.72 to 2.38; 20,581 participants; 3 studies; very low-quality evidence) and rhabdomyolysis, given the wide CIs and low event rate. Little or no difference in the risk of cancer, gallbladder-related disease and discontinuation due to adverse events were observed between treatment groups. For serum lipids, adding ezetimibe to statin or fenofibrate might further reduce the low-density lipoprotein cholesterol (LDL-C), total cholesterol and triglyceride levels and likely increase the high-density lipoprotein cholesterol levels; however, substantial heterogeneity was detected in most analyses.None of the included studies reported on health-related quality of life. AUTHORS' CONCLUSIONS Moderate- to high-quality evidence suggests that ezetimibe has modest beneficial effects on the risk of CVD endpoints, primarily driven by a reduction in non-fatal MI and non-fatal stroke, but it has little or no effect on clinical fatal endpoints. The cardiovascular benefit of ezetimibe might involve the reduction of LDL-C, total cholesterol and triglycerides. There is insufficient evidence to determine whether ezetimibe increases the risk of adverse events due to the low and very low quality of the evidence. The evidence for beneficial effects was mainly obtained from individuals with established atherosclerotic cardiovascular disease (ASCVD, predominantly with acute coronary syndrome) administered ezetimibe plus statins. However, there is limited evidence regarding the role of ezetimibe in primary prevention and the effects of ezetimibe monotherapy in the prevention of CVD, and these topics thus requires further investigation.
Collapse
Affiliation(s)
- Shipeng Zhan
- First Affiliated Hospital of Third Military Medical University (Army Medical University)Pharmacy Department30 Gaotanyan StreetShapingba DistrictChongqingChina400038
| | - Min Tang
- First Affiliated Hospital of Third Military Medical University (Army Medical University)Pharmacy Department30 Gaotanyan StreetShapingba DistrictChongqingChina400038
| | - Fang Liu
- First Affiliated Hospital of Third Military Medical University (Army Medical University)Pharmacy Department30 Gaotanyan StreetShapingba DistrictChongqingChina400038
| | - Peiyuan Xia
- First Affiliated Hospital of Third Military Medical University (Army Medical University)Pharmacy Department30 Gaotanyan StreetShapingba DistrictChongqingChina400038
| | - Maoqin Shu
- First Affiliated Hospital of Third Military Medical University (Army Medical University)Cardiovascular DepartmentChongqingChina
| | - Xiaojiao Wu
- Third Military Medical University (Army Medical University)Department of Health Statistics, College of Preventive MedicineChongqingChina
| | | |
Collapse
|
9
|
Liu GY, Meng XX, Zhang Z. Triglyceride to HDL-cholesterol ratio as an independent risk factor for the poor development of coronary collateral circulation in elderly patients with ST-segment elevation myocardial infarction and acute total occlusion. Medicine (Baltimore) 2018; 97:e12587. [PMID: 30278570 PMCID: PMC6181613 DOI: 10.1097/md.0000000000012587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine the prognostic role of triglyceride (TG) to high-density lipoprotein cholesterol (HDL) ratio for poorly developed coronary collateral circulation (CCC) in elderly patients with ST-segment elevation myocardial infarction (STEMI) and acute total occlusion (ATO).As a retrospective case-control study, elderly patients (age ≥60 years) with both STEMI and ATO (n = 346) were classified as having either poorly- or well-developed CCC (Rentrop grades 0-1 and 2-3, respectively). The ratio of TG/HDL was calculated according to the detected levels of TG and HDL. The difference of TG/HDL ratio in those 2 groups was compared by Student t test, and multivariate logistic regression analysis indicating occurrence of poorly developed CCC was performed. Receiver operator characteristic curve (ROC) analysis of TG/HDL ratio which determine the optimal cut-off value of TG/HDL ratio was applied.The TG/HDL ratio was significantly higher in patients with poorly developed CCC than in those with well-developed CCC (2.88 ± 2.52 vs 1.81 ± 1.18, P < .001). In multivariate logistic regression analysis, higher TG/HDL ratio (OR 1.789, 95% CI 1 . 346-2.378, P < .001) and the presence of left circumflex branch of coronary artery (LCX) occlusion (OR6.235, 95% CI 2.220-17.510, P = .001) were emerged as independent positive predictors of poor development of CCC, whereas presence of right coronary artery (RCA) occlusion (OR 0.474, 95% CI 0.265-0.850, P = .002) and onset time (OR 0.693, 95% CI 0.620-0.775, P < .001) were found as negative indicators. The optimal cut-off value of TG/HDL ratio was found as 1.58 in ROC analysis, which yielded an area under the curve value of 0.716 (95% CI 0.654-0.778, P < .001) and demonstrated a sensitivity of 80.9% and a specificity of 59.3% for prediction of poorly developed CCC.TG/HDL ratio is an independent risk factor for predicting poor development of CCC in elderly patients with STEMI and ATO.
Collapse
Affiliation(s)
- Guo-Yong Liu
- Heart Center, The First Affiliated Hospital, Lanzhou University, Lanzhou
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiao-Xue Meng
- Heart Center, The First Affiliated Hospital, Lanzhou University, Lanzhou
| | - Zheng Zhang
- Heart Center, The First Affiliated Hospital, Lanzhou University, Lanzhou
| |
Collapse
|