1
|
Chuphal B, Sathoria P, Rai U, Roy B. Insights into molecular characterization of NOD1-RIPK interaction and transcriptional modulation in response to LPS in spotted snakehead, Channa punctata (Bloch, 1793). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109916. [PMID: 39307255 DOI: 10.1016/j.fsi.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024]
Abstract
NOD1, plays a pivotal role in immune responses against bacterial as well as viral invasions. While the downstream signaling pathway of NOD1 is well understood in mammals, its characterization in lower vertebrates remains elusive. In present study, an effort was made to identify and characterize downstream signaling cascade of NOD1 in response to LPS, a potential ligand of NOD1 in teleosts, in spotted snakehead. In addition, the temporal effect of LPS on transcriptional modulation of NOD1 and its downstream signaling molecule RIPK2 was investigated. Docking studies revealed well conserved leucine rich domains of NOD1 that could bind with LPS. Further, NACHT-ATP interactions revealed differences in ATP binding motifs within the NACHT domain in spotted snakehead compared to those reported in other fish species and mammals pointing towards species-specific nature of ATP interactions within the NACHT domain. Further, it was revealed that the ssNOD1-CARD domain interacts with the CARD domain of downstream signaling molecule ssRIPK. Interestingly, LPS treatment modulated the expression of both, ssNOD1 and ssRIPK2 in a time-dependent manner.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, 180006, India.
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Qiao H, Jiang S, Fu H. Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals. Int J Mol Sci 2024; 25:11610. [PMID: 39519161 PMCID: PMC11546693 DOI: 10.3390/ijms252111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Many commercial aquatic animals are cultured in a variety of countries and regions [...].
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
3
|
Chuphal B, Sathoria P, Rai U, Roy B. Sexual dimorphism in NLR transcripts and its downstream signaling protein IL-1ꞵ in teleost Channa punctata (Bloch, 1793). Sci Rep 2024; 14:1923. [PMID: 38253695 PMCID: PMC10803744 DOI: 10.1038/s41598-024-51702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like receptors (NOD-like receptors or NLRs) are a family of intracellular pattern recognition receptors (PRRs) that initiates as well as regulate inflammatory responses. NLRs are characterized by a centrally located nucleotide binding domain and a leucine rich repeat domain at the C-terminal responsible for the recognition of intracellular microbe-associated molecular patterns (MAMPs) and danger-associated molecular patterns (DAMPs). In the present study in adult spotted snakehead we have investigated the sex-dependent tissue distribution of NLRs known to be associated with inflammation in teleost namely NOD1, NOD2, NLRC3, NLRC5, and NLRX1. Further, the sexual dimorphism in the expression of NLR transcript as well as the pro-inflammatory protein IL-1β was explored in fish under normal conditions, and in fish exposed to bacterial lipopolysaccharide (LPS). The NLRs show ubiquitous and constitutive expression in all the tissues. Moreover, a prominent disparity between males and females was observed in the basal expression of these genes in various tissues. The sexual dimorphism in NLR expression was also prominent when fish were exposed to LPS. Similarly, IL-1β exhibited sexual dimorphism in both normal as well as LPS-exposed fish.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir, Jammu, 180006, India.
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India.
| |
Collapse
|
4
|
Bakshi A, Rai U. Reproductive phase-dependent and sexually dimorphic expression of leptin and its receptor in different parts of brain of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2023; 102:904-912. [PMID: 36704849 DOI: 10.1111/jfb.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The reproductive phase-wise leptin (lep) and its receptor (lepr) expression in different parts of the brain of adult male and female spotted snakehead Channa punctata reveals sexual dimorphism in the brain leptin system. In anterior, middle and posterior parts of the brain of males, a maximum lep was observed in resting, spawning and postspawning reproductive phases, respectively. In females, a high level of lep was seen during the preparatory phase in the anterior brain, preparatory and postspawning phases in the middle brain and resting and postspawning phases in the posterior brain. Nonetheless, the transcript level of lepr was recorded highest during the spawning phase, irrespective of sex and region of the brain. Regardless of the reproductive state of fishes, lep and lepr were seen considerably high in middle and posterior parts of male brain than that of female, implying the involvement of factors other than sex steroids for sex-related variation in the leptin system in these regions of the brain. Nonetheless, no sex difference was evidenced in the expression of either ligand or its receptor in the anterior brain. In summary, the presence of lep and lepr in different regions of the brain and variation in their expression depending on sex and reproductive phases raise the possibility of pivotal actions of leptin in influencing neuronal circuitry and thereby reproductive functions.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | |
Collapse
|
5
|
Sathoria P, Chuphal B, Rai U, Roy B. Molecular cloning, characterization and 3D modelling of spotted snakehead fbn1 C-terminal region encoding asprosin and expression analysis of fbn1. Sci Rep 2023; 13:4470. [PMID: 36934166 PMCID: PMC10024713 DOI: 10.1038/s41598-023-31271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
The FBN1 gene encodes profibrillin protein that is cleaved by the enzyme furin to release fibrillin-1 and a glucogenic hormone, asprosin. Asprosin is implicated in diverse metabolic functions as well as pathological conditions in mammals. However, till date, there are no studies on asprosin in any non-mammalian vertebrate. In this study, we have retrieved the spotted snakehead Channa punctata fbn1 gene (ss fbn1) from the testicular transcriptome data and validated it. The transcript is predicted to encode 2817 amino acid long putative profibrillin protein. Amino acid sequence alignment of deduced ss profibrillin with human profibrillin revealed that the furin cleavage site in profibrillin is well conserved in C. punctata. Further, differential expression of ss fbn1 was observed in various tissues with the highest expression in gonads. Prominent expression of furin was also observed in the gonads suggesting the possibility of proteolytic cleavage of profibrillin protein and secretion of asprosin in C. punctata. In addition, the C-terminal of the fbn1 gene of C. punctata that codes for asprosin protein has been cloned. Using in silico approach, physicochemical properties of the putative ss asprosin were characterized and post-translational changes were predicted. The putative ss asprosin protein sequence is predicted to consist of 142 amino acid residues, with conserved glycosylation sites. Further, the 3D model of ss asprosin was predicted followed by MD (molecular dynamics) simulation for energy minimization. Thus, the current study, for the first time in non-mammalian vertebrates, predicts and characterizes the novel protein asprosin using in silico approach.
Collapse
Affiliation(s)
- Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India
| | - Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India.
| |
Collapse
|
6
|
Ding J, Tang D, Zhang Y, Gao X, Du C, Shen W, Jin S, Zhu J. Transcriptomes of Testes at Different Developmental Stages in the Opsariichthys bidens Predict Key Genes for Testis Development and Spermatogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:123-139. [PMID: 36520355 DOI: 10.1007/s10126-022-10186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Testis development is a complex process involving multiple genes, and the molecular mechanisms underlying testis development in Opsariichthys bidens remain unclear. We performed transcriptome sequencing analysis on a total of 12 samples of testes from stages II, III, IV, and V of O. bidens and obtained a total of 79.52 Gb clean data, as well as 288,573 transcripts and 116,215 unigenes. Differential expression analysis showed that 22,857 differentially expressed genes (DEGs) were screened in six comparison groups (III vs. II, IV vs. II, V vs. II, IV vs. III, V vs. III, and V vs. IV). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs showed that six comparison groups were significantly enriched for a total of 20 significantly up- or down-regulated pathways, including six pathways related to signal transduction, three pathways related to energy metabolism, five pathways related to disease, and two pathways related to ribosomes. Furthermore, our investigation revealed that DEGs were enriched in several important functional pathways, such as Huntington's disease signaling pathway, TGF-β signaling pathway, and ribosome signaling pathway. Protein-protein interaction network analysis of DEGs identified 63 up-regulated hub genes, including 9 kinesin genes and 2 cytoplasmic dynein genes, and 39 down-regulated hub genes, including 13 ribosomal protein genes. This result contributes to the knowledge of spermatogenesis and testis development in O. bidens.
Collapse
Affiliation(s)
- Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
7
|
Bakovic V, Höglund A, Martin Cerezo ML, Henriksen R, Wright D. Genomic and gene expression associations to morphology of a sexual ornament in the chicken. G3 GENES|GENOMES|GENETICS 2022; 12:6633936. [PMID: 35801935 PMCID: PMC9434260 DOI: 10.1093/g3journal/jkac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
How sexual selection affects the genome ultimately relies on the strength and type of selection, and the genetic architecture of the involved traits. While associating genotype with phenotype often utilizes standard trait morphology, trait representations in morphospace using geometric morphometric approaches receive less focus in this regard. Here, we identify genetic associations to a sexual ornament, the comb, in the chicken system (Gallus gallus). Our approach combined genome-wide genotype and gene expression data (>30k genes) with different aspects of comb morphology in an advanced intercross line (F8) generated by crossing a wild-type Red Junglefowl with a domestic breed of chicken (White Leghorn). In total, 10 quantitative trait loci were found associated to various aspects of comb shape and size, while 1,184 expression QTL were found associated to gene expression patterns, among which 98 had overlapping confidence intervals with those of quantitative trait loci. Our results highlight both known genomic regions confirming previous records of a large effect quantitative trait loci associated to comb size, and novel quantitative trait loci associated to comb shape. Genes were considered candidates affecting comb morphology if they were found within both confidence intervals of the underlying quantitative trait loci and eQTL. Overlaps between quantitative trait loci and genome-wide selective sweeps identified in a previous study revealed that only loci associated to comb size may be experiencing on-going selection under domestication.
Collapse
Affiliation(s)
- Vid Bakovic
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University , Stockholm 106 91, Sweden
| | | | - Rie Henriksen
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Dominic Wright
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| |
Collapse
|
8
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
9
|
Bakshi A, Rai U. In silico analyses of leptin and leptin receptor of spotted snakehead Channa punctata. PLoS One 2022; 17:e0270881. [PMID: 35797380 PMCID: PMC9262212 DOI: 10.1371/journal.pone.0270881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The present study, in addition to molecular characterization of leptin (lepa) and its receptor (lepr) of spotted snakehead Channa punctata, is focussed on physicochemical, structural, evolutionary and selection pressure analyses which are poorly elucidated in teleosts in spite of that existence of these genes is well reported in several fish species. The putative full-length Lep and Lepr of C. punctata showed conserved structural and functional domains, especially the residues responsible for structural integrity and signal transduction. Conversely, residues predicted essential for Lep-Lepr interaction displayed divergence between teleosts and tetrapods. Impact of substitutions/deletions predicted using protein variation effect analyser tool highlighted species specificity in ligand-receptor interaction. Physicochemical properties of ligand and receptor predicted for the first time in vertebrates revealed high aliphatic and instability indices for both Lepa and Lepr, indicating thermostability of proteins but their instability under ex vivo conditions. Positive grand average of hydropathy score of Lepa suggests its hydrophobic nature conjecturing existence of leptin binding proteins in C. punctata. In addition to disulphide bonding, a novel posttranslational modification (S-126 phosphorylation) was predicted in Lepa of C. punctata. In Lepr, disulphide bond formation and N-linked glycosylation near WSXWS motif in ECD, and phosphorylation at tyrosine residues in ICD were predicted. Leptin and its receptor sequence of C. punctata cladded with its homolog from C. striata and C. argus of order Anabantiformes. Leptin system of Anabantiformes was phylogenetically closer to that of Pleuronectiformes, Scombriformes and Perciformes. Selection pressure analysis showed higher incidence of negative selection in teleostean leptin genes indicating limited adaptation in their structure and function. However, evidence of pervasive and episodic diversifying selection laid a foundation of co-evolution of Lepa and Lepr in teleosts.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
11
|
Bakshi A, Rai U. Seasonality, sex-specificity and transcriptional regulation of hepatic leptin system in spotted snakehead Channa punctata. Gen Comp Endocrinol 2021; 310:113821. [PMID: 34015346 DOI: 10.1016/j.ygcen.2021.113821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The present study deals with sex-specific reproductive phase-dependent variation and sex steroids-induced transcriptional regulation of hepatic lep and lepr in nutritionally valuable spotted snakehead, Channa punctata. The data on seasonality reveals sex-specific variation in pattern of lep transcription where a high level was recorded during resting and postspawning quiescent phases in female while during resting and spawning phases in male. Unlike lep, lepr exhibited similar expression pattern along the reproductive phases in both the sexes. As compared to female, a three-fold higher expression of lep was detected in male during reproductively active phase only. However, no sexual dimorphism was evidenced in lepr either during active or quiescent phase. To explore the implication of sex steroids in regulation of leptin system, we correlated levels of plasma testosterone (T) and 17β-estradiol (E2) with leptin system in males as well as females. Further, criss-cross in vivo and in vitro experiments with dihydrotestosterone (DHT) and E2 were conducted in male and female spotted snakehead. The leptin system was downregulated after DHT administration in both the sexes. However, with E2, a marked decrease was evidenced in male only. The sex-wise variable response of leptin system to sex steroids was validated by in vitro experiments wherein liver fragments from male and female fish were incubated individually with both the sex steroids. In conclusion, sex steroids modulate hepatic leptin system differentially depending on sex and reproductive state of spotted snakehead.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
12
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
13
|
Chuphal B, Rai U, Kumar R, Roy B. Molecular and functional characterization of spotted snakehead NOD1 with an emphasis on structural insights into iE-DAP binding motifs employing advanced bioinformatic tools. J Biomol Struct Dyn 2021; 40:7483-7495. [PMID: 33710949 DOI: 10.1080/07391102.2021.1898472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are cytosolic receptors implicated in recognition of intracellular pathogen associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs). Depending upon their effector binding domain (EBD) at the C-terminal, the NLRs are categorized into NLRA, NLRB, NLRC, NLRP and NLRX. NOD1 is a pivotal player in immune responses against bacterial and viral invasions and interacts with pathogens via C-terminal leucine rich repeat (LRR) domain. This study aims at characterizing NOD1 in an economically important teleost of the Indian subcontinent, spotted snakehead Channa punctata. The understanding of pathogen-receptor interaction in teleosts is still obscure. In light of this, combinatorial approach involving protein modeling, docking, MD simulation and binding free energy calculation were employed to identify key motifs involved in binding iE-DAP. In silico analysis revealed that NOD1 consists of 943 amino acids comprising of one caspase recruitment domain (CARD) at N-terminal, one central NACHT domain and nine leucine rich repeat (LRR) regions at C-terminal. Structural dynamics study showed that the C-terminal β-sheet LRR4-7 region is involved in iE-DAP binding. NOD1 was ubiquitously and constitutively expressed in all tissues studied. Differential expression profile of NOD1 induced by Aeromonas hydrophila infection was also investigated. Lymphoid organs and phagocytes of infected spotted snakehead showed significant downregulation of NOD1 expression. The current study thus gives an insight into structural and functional dynamics of NOD1 which might have future prospect for structure-based drug designing in teleosts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, Delhi, India
| | - Brototi Roy
- Maitreyi College, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Shen H, Li C, He M, Huang Y, Wang J, Wang M, Yue B, Zhang X. Immune profiles of male giant panda (Ailuropoda melanoleuca) during the breeding season. BMC Genomics 2021; 22:143. [PMID: 33639852 PMCID: PMC7916315 DOI: 10.1186/s12864-021-07456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened endemic Chinese species and a flagship species of national and global conservation concern. Life history theory proposes that reproduction and immunity can be mutually constraining and interrelated. Knowledge of immunity changes of male giant pandas during the breeding season is limited. Results Here, we researched peripheral blood gene expression profiles associated with immunity. Thirteen captive giant pandas, ranging from 9 to 11 years old, were divided into two groups based on their reproductive status. We identified 318 up-regulated DEGs and 43 down-regulated DEGs, which were enriched in 87 GO terms and 6 KEGG pathways. Additionally, we obtained 45 immune-related genes with altered expression, mostly up-regulated, and identified four hub genes HSPA4, SUGT1, SOD1, and IL1B in PPI analysis. These 45 genes were related to pattern recognition receptors, autophagy, peroxisome, proteasome, natural killer cell, antigen processing and presentation. SUGT1 and IL1B were related to pattern recognition receptors. HSP90AA1 was the most up-regulated gene and is a member of heat shock protein 90 family. HSP90 contributes to the translocation of extracellular antigen. KLRD1 encodes CD94, whose complex is an inhibitor of the cytotoxic activity of NK cells, was down-regulated. IGIP, which has the capability of inducing IgA production by B cells, was down-regulated, suggesting low concentration of IgA in male giant pandas. Our results suggest that most immune-related genes were up-regulated and more related to innate immune than adaptive immune. Conclusions Our results indicated that breeding male giant pandas presented an immunoenhancement in innate immunity, enhanced antigen presentation and processing in cellular immunity compared to non-breeding males. The humoral immunity of male giant pandas may show a tendency to decrease during the breeding season. This study will provide a foundation for further studies of immunity and reproduction in male giant pandas. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07456-x.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
15
|
He FX, Jiang DN, Huang YQ, Mustapha UF, Yang W, Cui XF, Tian CX, Chen HP, Shi HJ, Deng SP, Li GL, Zhu CH. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1963-1980. [PMID: 31399918 DOI: 10.1007/s10695-019-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Scatophagus argus is a new emerging aquaculture fish in East and Southeast Asia. To date, research on reproductive development and regulation in S. argus is lacking. Additionally, genetic and genomic information about reproduction, such as gonadal transcriptome data, is also lacking. Herein, we report the first gonadal transcriptomes of S. argus and identify genes potentially involved in reproduction and gonadal development. A total of 136,561 unigenes were obtained by sequencing of testes (n = 3) and ovaries (n = 3) at stage III. Genes upregulated in males and females known to be involved in gonadal development and gametogenesis were identified, including male-biased dmrt1, amh, gsdf, wt1a, sox9b, and nanos2, and female-biased foxl2, gdf9, bmp15, sox3, zar1, and figla. Serum estradiol-17β and 11-ketotestosterone levels were biased in female and male fish, respectively. Sexual dimorphism of serum steroid hormone levels were interpreted after expression analysis of 20 steroidogenesis-related genes, including cyp19a1a and cyp11b2. This gonadal transcript dataset will help investigate functional genes related to reproduction in S. argus.
Collapse
Affiliation(s)
- Fei-Xiang He
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dong-Neng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan-Qing Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xue-Fan Cui
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chang-Xu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hua-Pu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Juan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Si-Ping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guang-Li Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chun-Hua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
16
|
Abdelmoneim A, Abdu A, Chen S, Sepúlveda MS. Molecular signaling pathways elicited by 17α-ethinylestradiol in Japanese medaka male larvae undergoing gonadal differentiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:187-195. [PMID: 30682621 DOI: 10.1016/j.aquatox.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic contaminants released into water bodies are potentially affecting the reproduction of aquatic organisms. Exposure to 17α-ethinylestradiol (EE2), a synthetic estrogen agonist commonly found in sewage effluents, has been shown to cause gonadal changes in male gonochoristic fish ranging from gonadal intersex to complete sex reversal. Although these gonadal changes have been well studied in Japanese medaka Oryzias latipes, the molecular mechanisms behind them are poorly understood. Our objective was to study the signaling pathways elicited by exposure to different concentrations of EE2 in this species. Embryos and larvae were sexed by the presence of leucophores and dmy expression (only in males). Male medaka were exposed to two EE2 concentrations (30 and 300 ng/L) during their gonadal differentiation period (7-22 dpf). The transcriptome of larvae was analyzed using RNA sequencing followed by pathway analysis. Genes involved in sex differentiation and gonadal development (e.g., cldn19, ctbp1, hsd17b4) showed a female-like expression pattern in EE2-exposed males with some genes changing in expression in an EE2 concentration-dependent manner. However, not all genes known to be involved in sex differentiation and gonadal development (e.g., wnt4b) were altered by EE2. Several of the prominently affected signaling pathways involved genes associated with steroidogenesis, steroid receptor signaling and steroid metabolism, such as cyp2b3, cyp3b40, cyp1a, hsd17b4. We also report on novel genes and pathways affected that might play a role in gonadal changes, including several genes associated with FXR/RXR and LXR/RXR activation networks. This study is the first to examine the transcriptomic changes in male fish resulting from exposure to EE2 during the gonadal differentiation period, providing new insights on the signaling pathways involved in the development of gonadal changes in gonochoristic fish.
Collapse
Affiliation(s)
- Ahmed Abdelmoneim
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Veterinary Forensic Medicine & Toxicology, Assiut University, Assiut, Egypt
| | - Amira Abdu
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Parasitology, Assiut University, Assiut, Egypt
| | - Shuai Chen
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Roy A, Basak R, Rai U. In silico analysis, seasonal variation and gonadotropic regulation of jag1 and its receptor notch1 in testis of spotted snakehead Channa punctatus. Gen Comp Endocrinol 2018; 266:166-177. [PMID: 29772210 DOI: 10.1016/j.ygcen.2018.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 05/13/2018] [Indexed: 01/03/2023]
Abstract
The present study in seasonally breeding spotted snakehead Channa punctatus, for the first time in nonmammalian vertebrates, demonstrated correlation between reproductive phase-dependent testicular expression of ligand Jag1/receptor Notch1 and spermatogenic events. Testicular transcriptome sequencing data from our earlier study in C. punctatus was used in the present study to select the best transcript for jag1 (cpjag1) and notch1 (cpnotch1). The transcripts cpjag1 and cpnotch1 encoded full-length putative proteins of 1215 (cpJag1) and 2475 (cpNotch1) amino acids, respectively. A marked homology in the extracellular domains of Jag1 and Notch1 was observed following their alignment with respective proteins from different vertebrates, suggesting conservation in ligand-receptor interaction in C. punctatus. Both cpJag1 and cpNotch1 showed phylogenetic closeness with their teleostean counterparts, especially with that of Perciformes. Temporal expression of cpjag1 and cpnotch1 in testis depending on reproductive phases showed an appreciably high expression during spermatogenically inactive resting and postspawning phases when seminiferous lobules consisted of spermatogonial stem cells and undifferentiated spermatogonia. Their expression sharply declined during spermatogenically active preparatory and spawning phases. It appears that involvement of cpjag1/cpnotch1 is restricted to inactive phases when spermatogonial stem cells renew themselves and replenish undifferentiated spermatogonia. This assumption is ascertained by an experimental study in which high level of testicular cpjag1/cpnotch1 expression in control fish of resting phase markedly decreased after administration of human chorionic gonadotropin that is known to induce proliferation and differentiation of spermatogonia and spawning of spermatozoa.
Collapse
Affiliation(s)
- Alivia Roy
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Reetuparna Basak
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
18
|
Basak R, Roy A, Rai U. In silico analysis, temporal expression and gonadotropic regulation of receptors for follicle-stimulating hormone and luteinizing hormone in testis of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2018; 93:53-71. [PMID: 29931764 DOI: 10.1111/jfb.13727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
This study in spotted snakehead Channa punctata was aimed to develop a comprehensive understanding of testicular gonadotropin receptors, from their sequence characterization, temporal expression to gonadotropic regulation, in seasonally breeding teleosts. A single form of follicle-stimulating hormone receptor (cpfshra) and luteinizing hormone/choriogonadotropin receptor (cplhcgr), was identified from testicular transcriptome data of C. punctata. Although deduced full-length protein sequence for cpFshra (694 amino acids) and cpLhcgr (691 amino acids) showed homology with their counterparts of other vertebrates, multiple insertion-deletion-substitution of residues suggest marked alterations in their structure and ligand specificity. The absolute quantification of testicular cpfshra and cplhcgr was estimated along the reproductive cycle following real-time PCR. The temporal expression profile showed highest testicular expression of both the gonadotropin receptors during resting phase. Their expression progressively decreased during preparatory and spawning phases concomitant with spermatogonial proliferation and differentiation and spermiogenesis. However, levels of cpfshra and cplhcgr sharply increased during post-spawning when seminiferous lobules were largely devoid of germ cells. To explore gonadotropic regulation of testicular cpfshra and cplhcgr, one group of fish of resting phase was administered with single dose of human chorionic gonadotropin (hCG; 5,000 IU/kg body mass) on day 0 and sacrificed on day 3 and day 5, while another group receiving two injections of hCG (day 0 and day 7) was sacrificed on day 14. The expression pattern of testicular gonadotropin receptors in hCG-treated fish sacrificed after 3, 5 and 14 days was similar to that of preparatory, spawning and postspawning phases, respectively. Likewise, testicular histology of hCG-treated fish sacrificed on day 3, day 5 and day 14 was comparable with that of preparatory, early spawning and late spawning phases, respectively. In light of the fact that gonadotropin receptors are largely expressed on somatic cells, an apparent decrease in testicular cpfshra and cplhcgr levels during preparatory and spawning phases or after 3 and 5 days from first hCG injection might not be due to downregulation of their expression. Rather, this could be due to dilution of somatic cell mRNA by large amount of germ cell mRNA. To verify this assumption, effect of hCG on plasma level of androgens was investigated employing enzyme-linked immunosorbent assay. A marked increase in plasma level of testosterone and 11-ketotestosterone was observed after hCG treatment in C. punctata. This would have been possible only when hCG upregulated the expression of testicular gonadotropin receptors.
Collapse
Affiliation(s)
| | - Alivia Roy
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Hwang JY, Jeong JM, Kwon MG, Seo JS, Hwang SD, Son MH, Bae JS, Choi KM, Cho DH, Jeswin J, Park CI. Olive flounder CD276 (B7-H3) a coinhibitory molecule for T cells: Responses during viral hemorrhagic septicemia virus (VHSV) stimulation. FISH & SHELLFISH IMMUNOLOGY 2018; 73:228-233. [PMID: 29253650 DOI: 10.1016/j.fsi.2017.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis, defense and protect tissue integrity. CD276 (B7-H3) is an important immune checkpoint member of this family, which is induced on antigen-presenting cells (APCs), and plays an important role in the inhibition of T-cell function. We have characterized the CD276 gene of olive flounder, Paralichthys olivaceus. OfCD276 has an ORF of 912 bp that codes for 303 amino acids with a predicted molecular mass of 33 kDa. It is a type I transmembrane protein with a single extracellular V- and C-like Ig domains, a transmembrane region, and a highly diverse cytoplasmic tail. This gene was distinctly expressed in gill, spleen, and skin, and sparsely expressed in other tissues. Pathogen stimulation by VHSV revealed that transcription of OfCD276 was induced on early hours in liver and expressed late in head kidney, spleen, intestine and gill tissues. Flow cytometry analysis of leukocytes revealed the percentage of granulocytes and lymphocytes that expressed OfCD276 molecules on their cell surface was 85.1% and 3.1%, respectively. Our study shows a significant role played by this coinhibitory molecule that participate in the regulation of the cell mediated immune response.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
| | - Jung Soo Seo
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
| | - Seong Don Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
| | - Maeng-Hyun Son
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Joseph Jeswin
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|