1
|
Zhu J, Jiang H, Wang W. Colorimetric sensor array for discriminating and determinating phenolic pollutants basing on different ratio of ligands in Cu/MOFs. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132418. [PMID: 37647664 DOI: 10.1016/j.jhazmat.2023.132418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The high toxicity and low biodegradability of the phenolic pollutants destroyed the balance of the environment and influenced human health seriously. Here, we developed a three-dimensional coloremetric sensor array for discriminating and determinating phenolic pollutants basing on the distinct Cu/nucleotides MOFs. Firstly, three laccase-mimic Cu/MOFs (Cu/AMP, Cu/CMP, and Cu/GMP) were obtained by regulating the molar ratio of Cu2+ and nucleotides. Then the Cu/MOFs as the recognition elements of the sensor array catalyzed the pollutants-4-AAP-H2O2 system, obtaining the colored benzoquinone products. Subsequently, the data array obtaining from the combined training matrix (3 Cu/MOFs × 6 pollutants × 5 replicates) was projected into a new dimensional space to obtain the 3D canonical scores, and classified into individual clusters by introducing LDA method. No overlap in their respective LDA plots for the six phenolic pollutants with different concentrations suggested the prominent discriminating performance of the sensor array. Furthermore, the sensor array exhibited high selectivity compared to the "lock-and-key" sensors even other active matrices coexisting in water samples. Importantly, the most influential discrimination factor was used to monitor the levels of the six targets, evidencing the potential application in assessing water pollution and maintaining human health.
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Hongwei Jiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Wenwu Wang
- School of Statistics and Data Science, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
2
|
Pseudomonas veronii strain 7-41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Sci Rep 2022; 12:20527. [PMID: 36443410 PMCID: PMC9705281 DOI: 10.1038/s41598-022-25191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Pollution of the environment by crude oil and oil products (represented by various types of compounds, mainly aliphatic, mono- and polyaromatic hydrocarbons) poses a global problem. The strain Pseudomonas veronii 7-41 can grow on medium-chain n-alkanes (C8-C12) and polycyclic aromatic hydrocarbons such as naphthalene. We performed a genetic analysis and physiological/biochemical characterization of strain 7-41 cultivated in a mineral medium with decane, naphthalene or a mixture of the hydrocarbons. The genes responsible for the degradation of alkanes and PAHs are on the IncP-7 conjugative plasmid and are organized into the alk and nah operons typical of pseudomonads. A natural plasmid carrying functional operons for the degradation of two different classes of hydrocarbons was first described. In monosubstrate systems, 28.4% and 68.8% of decane and naphthalene, respectively, were biodegraded by the late stationary growth phase. In a bisubstrate system, these parameters were 25.4% and 20.8% by the end of the exponential growth phase. Then the biodegradation stopped, and the bacterial culture started dying due to the accumulation of salicylate (naphthalene-degradation metabolite), which is toxic in high concentrations. The activity of the salicylate oxidation enzymes was below the detection limit. These results indicate that the presence of decane and a high concentration of salicylate lead to impairment of hydrocarbon degradation by the strain.
Collapse
|
3
|
Characterization and Expression Analysis of Extradiol and Intradiol Dioxygenase of Phenol-Degrading Haloalkaliphilic Bacterial Isolates. Curr Microbiol 2022; 79:294. [PMID: 35989347 PMCID: PMC9393131 DOI: 10.1007/s00284-022-02981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Haloalkophilic bacteria have a potential advantage as a bioremediation organism of high oil-polluted and industrial wastewater. In the current study, Haloalkaliphilic isolates were obtained from Hamralake, Wadi EL-Natrun, Egypt. The phenotype script, biochemical characters, and sequence analysis of bacterial-16S rRNA were used to identify the bacterial isolates; Halomonas HA1 and Marinobacter HA2. These strains required high concentrations of NaCl to ensure bacterial growth, especially Halomonas HA1 strain. Notably, both isolates can degrade phenol at optimal pH values, between 8 and 9, with the ability to grow in pH levels up to 11, like what was seen in the Halomonas HA1 strain. Moreover, both isolates represent two different mechanistic pathways for phenol degradation. Halomonas HA1 exploits the 1,2 phenol meta-cleavage pathway, while Marinobacter HA2 uses the 2,3 ortho-cleavage pathway as indicated by universal primers for 1,2 and 2,3 CTD genes. Interestingly, Marinobacter HA2 isolate eliminated the added phenol within an incubation period of 72 h, while the Halomonas HA1 isolate invested 96 h in degrading 84% of the same amount of phenol. Phylogenetic analysis of these 1,2 CTD (catechol dioxygenase) sequences clearly showed an evolutionary relationship between 1,2 dioxygenases of both Halomonadaceae and Pseudomonadaceae. In comparison, 2,3 CTD of Marinobacter HA2 shared the main domains of the closely related species. Furthermore, semi-quantitative RT-PCR analysis proved the constitutive expression pattern of both dioxygenase genes. These findings provide new isolates of Halomonas sp. and Marinobacter sp. that can degrade phenol at high salt and pH conditions via two independent mechanisms.
Collapse
|
4
|
Wang M, Chen X, Tang Y, Nie Y, Wu X. Substrate availability and toxicity shape the structure of microbial communities engaged in metabolic division of labor. MLIFE 2022; 1:131-145. [PMID: 38817679 PMCID: PMC10989799 DOI: 10.1002/mlf2.12025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/01/2024]
Abstract
Metabolic division of labor (MDOL) represents a widespread natural phenomenon, whereby a complex metabolic pathway is shared between different strains within a community in a mutually beneficial manner. However, little is known about how the composition of such a microbial community is regulated. We hypothesized that when degradation of an organic compound is carried out via MDOL, the concentration and toxicity of the substrate modulate the benefit allocation between the two microbial populations, thus affecting the structure of this community. We tested this hypothesis by combining modeling with experiments using a synthetic consortium. Our modeling analysis suggests that the proportion of the population executing the first metabolic step can be simply estimated by Monod-like formulas governed by substrate concentration and toxicity. Our model and the proposed formula were able to quantitatively predict the structure of our synthetic consortium. Further analysis demonstrates that our rule is also applicable in estimating community structures in spatially structured environments. Together, our work clearly demonstrates that the structure of MDOL communities can be quantitatively predicted using available information on environmental factors, thus providing novel insights into how to manage artificial microbial systems for the wide application of the bioindustry.
Collapse
Affiliation(s)
- Miaoxiao Wang
- Department of Energy & Resources Engineering, College of EngineeringPeking UniversityBeijingChina
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Department of Environmental MicrobiologyEawagDübendorfSwitzerland
- Department of Environmental Science and Engineering, College of Architecture and EnvironmentSichuan UniversityChengduChina
| | - Xiaoli Chen
- Department of Energy & Resources Engineering, College of EngineeringPeking UniversityBeijingChina
- Institute of Ocean ResearchPeking UniversityBeijingChina
| | - Yue‐Qin Tang
- Department of Environmental Science and Engineering, College of Architecture and EnvironmentSichuan UniversityChengduChina
| | - Yong Nie
- Department of Energy & Resources Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Xiao‐Lei Wu
- Department of Energy & Resources Engineering, College of EngineeringPeking UniversityBeijingChina
- Institute of Ocean ResearchPeking UniversityBeijingChina
- Institute of EcologyPeking UniversityBeijingChina
| |
Collapse
|
5
|
Sela R, Halpern M. The Chironomid Microbiome Plays a Role in Protecting Its Host From Toxicants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.796830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms are assemblages of the host and their endogenous bacteria, which are defined as microbiomes. The host and its microbiome undergo a mutual evolutionary process to adapt to changes in the environment. Chironomids (Diptera; Chironomidae), are aquatic insects that grow and survive in polluted environments; however, the mechanisms that protect them under these conditions are not fully understood. Here we present evidence that the chironomids’ microbiome enables them to survival in polluted environments. It has been demonstrated that about 40% of the microbiota that inhabit Chironomus transvaalensis egg masses and larvae has the potential to detoxify different toxicants. Metagenomic analysis of Chironomus ramosus larvae demonstrated the presence of genes in the insects’ microbiome that can help the insects to survive in hostile environments. A set of experiments demonstrated that short exposure of C. transvaalensis larvae to metals significantly changed their microbiota composition in comparison to unexposed larvae. Another experiment, that followed Koch’s postulates, demonstrated that disinfected C. transvaalensis larvae can survive toxic lead and chromium exposure when they are recolonized with bacteria that can detoxify these toxic metals. This accumulating research, points to the conclusion that the chironomid microbiome plays a role in protecting its host from toxicants.
Collapse
|
6
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
7
|
Jiang B, Zeng Q, Hou Y, Li H, Liu J, Xu J, Shi S, Ma F. Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137139. [PMID: 32045761 DOI: 10.1016/j.scitotenv.2020.137139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The membrane antifouling and shifts of microbial communities of long-term electric field applied in MBR (EMBR) for treating phenol wastewater was systematically investigated. The increased voltage increased the phenol degradation rate and slowed down the TMP increase rate in EMBR (G1-G4: 1.65 × 10-3-8.40 × 10-4 Mpa/d), indicated the enhancement of phenol treatment and mitigation of membrane fouling. Decrease of protein (PN)/polysaccharide (PS) in EPS increased the negative charge and decreased the hydrophobicity of sludge, thus abated its adsorption on membrane surface. The decrease of AHLs concentration attributed to the electrolysis of AHLs by the electro-generated H2O2. Besides, the AHLs had significantly negative correlation with QQ bacteria Rhodococcus and Stenotrophomonas enrichment and positive correlation with QS bacteria Aeromonas decrease in EMBRs, suggesting that coupling effects of voltage and QQ bacteria degraded AHLs, thus decreased EPS content which was positively correlated with AHLs concentration. Biopolymer-degrading genera (Clostridium sensu strict etc.) increased in EMBR and on membrane surface, while biofilm-forming genera (Pseudomonas etc.) decreased on membrane surface. These resulted in EPS content decrease and membrane antifouling.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms 2020; 8:E652. [PMID: 32365784 PMCID: PMC7285258 DOI: 10.3390/microorganisms8050652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro Soares-Castro
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Tanel Ilmjärv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro M. Santos
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Atya Kapley
- Director’s Research Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India;
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| |
Collapse
|
9
|
Yao CL, Lin CC, Chu IM, Lai YT. Development of a Surfactant-Containing Process to Improve the Removal Efficiency of Phenol and Control the Molecular Weight of Synthetic Phenolic Polymers Using Horseradish Peroxidase in an Aqueous System. Appl Biochem Biotechnol 2020; 191:45-58. [PMID: 31940119 DOI: 10.1007/s12010-020-03245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Che-Chi Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| |
Collapse
|
10
|
Sela R, Halpern M. Seasonal dynamics of Chironomus transvaalensis populations and the microbial community composition of their egg masses. FEMS Microbiol Lett 2020; 366:5700282. [DOI: 10.1093/femsle/fnaa008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Chironomids (Diptera; Chironomidae) are the most abundant insects in freshwater environments and are considered natural reservoirs of Vibrio cholerae. We monitored the annual dynamics of chironomid populations along with their microbiota in order to better understand host–microbiota interactions. Chironomus transvaalensis populations peaked biannually in August and May–June. The composition of the endogenous bacterial communities of their egg masses clustered in two groups according to the sampling periods August–November and May–July. Nevertheless, a core bacterial community (43%) was present in all egg-mass samples. The most abundant phyla were: Proteobacteria, Firmicutes, Cyanobacteria and Bacteroidetes. The abundance of several genera (e.g. Rheinheimera and Pseudomonas) was positively correlated with C. transvaalensis population dynamics, while a predator–prey interaction was observed between the relative abundance of Vibrio OTUs and C. transvaalensis population size. Chironomids are known to tolerate toxic and stress conditions, and our results demonstrated that bacterial genera that may protect the insect under these conditions are present in the egg masses. After hatching, the first larval meal is the gelatinous matrix that surrounds the eggs. This meal contains a probiotic consortium that may protect the larva during its metamorphosis. The results provide important insights into the host–microbe interactions of chironomids.
Collapse
Affiliation(s)
- Rotem Sela
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abb Khoushi Ave. Mt. Carmel, Haifa, 3498838, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abb Khoushi Ave. Mt. Carmel, Haifa, 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Derech Kiryat Amal, Tivon, 3600600, Israel
| |
Collapse
|
11
|
Han J, Cai Y, Wang Y, Gu L, Li C, Mao Y, Zhang W, Ni L. Synergetic effect of Ni2+ and 5-acrylamidobenzoboroxole functional groups anchoring on magnetic nanoparticles for enhanced immobilization of horseradish peroxidase. Enzyme Microb Technol 2019; 120:136-143. [DOI: 10.1016/j.enzmictec.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
|
12
|
Cheng Y, Zang H, Wang H, Li D, Li C. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:111-120. [PMID: 29614448 DOI: 10.1016/j.ecoenv.2018.03.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide whose long period of residence poses a serious hazard to rotational crops. Microbial degradation is considered to be the most acceptable method for its removal, but the degradation mechanism is not clear. In this work, we investigated gene expression changes during the degradation of chlorimuron-ethyl by an effective chlorimuron-ethyl-degrading bacterium, Rhodococcus erythropolis D310-1. The genes that correspond to this degradation and their mode of action were identified using RNA-Seq and qRT-PCR. The RNA-Seq results revealed that 500 genes were up-regulated during chlorimuron-ethyl degradation by strain D310-1. KEGG annotation showed that the dominant metabolic pathways were "Toluene degradation" and "Aminobenzoate degradation". Combining GO and KEGG classification with the relevant literature, we predicted that cytochrome P-450, carboxylesterase, and monooxygenase were involved in metabolic chlorimuron-ethyl biodegradation and that the enzyme active site and mode of action coincided with the degradation pathway proposed in our previous study. qRT-PCR experiments suggested that the R. erythropolis D310-1 carboxylesterase, cytochrome P-450 and glycosyltransferase genes were the key genes expressed during chlorimuron-ethyl biodegradation. To the best of our knowledge, this report is the first to describe the transcriptome analysis of a Rhodococcus species during the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
13
|
Wu L, Ali DC, Liu P, Peng C, Zhai J, Wang Y, Ye B. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China. PLoS One 2018; 13:e0199572. [PMID: 29949643 PMCID: PMC6021097 DOI: 10.1371/journal.pone.0199572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
Based on the feature of high-altitude permafrost topography and the diverse microbial ecological communities of the Qinghai-Tibetan Plateau, soil samples from thirteen different collection points around Qinghai lake were collected to screen for extremophilic strains with the ability to degrade phenol, and one bacterial strain recorded as TIBETAN4 that showed effective biodegradation of phenol was isolated and identified. TIBETAN4 was closely related to Kocuria based on its observed morphological, molecular and biochemical characteristics. TIBETAN4 grew well in the LB medium at pH 7–9 and 0–4% NaCl showing alkalophilicity and halophilism. The isolate could also tolerate up to 12.5 mM phenol and could degrade 5 mM phenol within 3 days. It maintained a high phenol degradation rate at pH 7–9 and 0–3% NaCl in MSM with 5 mM phenol added as the sole carbon source. Moreover, TIBETAN4 could maintain efficient phenol degradation activity in MSM supplemented with both phenol and glucose and complex water environments, including co-culture Penicillium strains or selection of non-sterilized natural lake water as a culture. It was found that TIBETAN4 showed enzymatic activity of phenol hydroxylase and catechol 1,2-dioxygenase after induction by phenol and the corresponding genes of the two enzymes were detected in the genome of the isolate, while catechol 2,3-dioxygenase or its gene was not, which means there could be a degradation pathway of phenol through the ortho-pathway. The Q-PCR results showed that the transcripts of both the phenol hydroxylase gene and catechol 1,2-dioxygenase gene were up-regulated under the stimulation of phenol, demonstrating again that the strain degraded phenol via ortho-degradation pathway.
Collapse
Affiliation(s)
- Leyang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daniel C. Ali
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Peng Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingxin Zhai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| |
Collapse
|
14
|
Immobilization of Planococcus sp. S5 Strain on the Loofah Sponge and Its Application in Naproxen Removal. Catalysts 2018. [DOI: 10.3390/catal8050176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Planococcus sp. S5, a Gram-positive bacterium isolated from the activated sludge is known to degrade naproxen in the presence of an additional carbon source. Due to the possible toxicity of naproxen and intermediates of its degradation, the whole cells of S5 strain were immobilized onto loofah sponge. The immobilized cells degraded 6, 9, 12 or 15 mg/L of naproxen faster than the free cells. Planococcus sp. cells immobilized onto the loofah sponge were able to degrade naproxen efficiently for 55 days without significant damage and disintegration of the carrier. Analysis of the activity of enzymes involved in naproxen degradation showed that stabilization of S5 cells in exopolysaccharide (EPS) resulted in a significant increase of their activity. Changes in the structure of biofilm formed on the loofah sponge cubes during degradation of naproxen were observed. Developed biocatalyst system showed high resistance to naproxen and its intermediates and degraded higher concentrations of the drug in comparison to the free cells.
Collapse
|