1
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Amodeo G, Franchi S, Galimberti G, Riboldi B, Sacerdote P. The Prokineticin System in Inflammatory Bowel Diseases: A Clinical and Preclinical Overview. Biomedicines 2023; 11:2985. [PMID: 38001985 PMCID: PMC10669895 DOI: 10.3390/biomedicines11112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC), which are characterized by chronic inflammation of the gastrointestinal (GI) tract. IBDs clinical manifestations are heterogeneous and characterized by a chronic relapsing-remitting course. Typical gastrointestinal signs and symptoms include diarrhea, GI bleeding, weight loss, and abdominal pain. Moreover, the presence of pain often manifests in the remitting disease phase. As a result, patients report a further reduction in life quality. Despite the scientific advances implemented in the last two decades and the therapies aimed at inducing or maintaining IBDs in a remissive condition, to date, their pathophysiology still remains unknown. In this scenario, the importance of identifying a common and effective therapeutic target for both digestive symptoms and pain remains a priority. Recent clinical and preclinical studies have reported the prokineticin system (PKS) as an emerging therapeutic target for IBDs. PKS alterations are likely to play a role in IBDs at multiple levels, such as in intestinal motility, local inflammation, ulceration processes, localized abdominal and visceral pain, as well as central nervous system sensitization, leading to the development of chronic and widespread pain. This narrative review summarized the evidence about the involvement of the PKS in IBD and discussed its potential as a druggable target.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (S.F.); (G.G.); (B.R.); (P.S.)
| | | | | | | | | |
Collapse
|
3
|
Giada A, Giulia G, Paola S, Silvia F. Characterization of prokineticin system in Crohn's disease pathophysiology and pain, and its modulation by alcohol abuse: A preclinical study. Biochim Biophys Acta Mol Basis Dis 2023:166791. [PMID: 37336367 DOI: 10.1016/j.bbadis.2023.166791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Crohn's disease-(CD) pathogenesis is still unknown and chronic pain is a frequent symptom in CD-patients. Identifying novel therapeutic targets and predisposing factors is a primary goal. In this regard, prokineticin system-(PKS) appears a promising target. AIMS AND METHODS TNBS-model was used. DAI, abdominal and visceral pain, and muscle strength were monitored. CD-mice were sacrificed at two times (day 7 and 14 after TNBS) in order to identify PKS involvement in CD pathophysiology and pain. PKS characterization was performed in mesenteric lymph nodes-(MLN), colon, myenteric plexus-(MP), dorsal root ganglia-(DRGs) and spinal cord-(SC). Inflammation/neuroinflammation was also assessed in the same tissues. In order to evaluate alcohol abuse as a possible trigger for CD and its effect on PKS activation, naïve mice were administered (oral-gavage) with ethanol for 10 consecutive days. PKS as well as inflammation/neuroinflammation were evaluated in MLN, colon and MP. RESULTS TNBS treated-mice showed a rapid increase in DAI, abdominal/visceral hypersensitivity and a progressive strength loss. In all tissue analysed of CD-mice, a quick and significant increase of mRNA of PKs and PKRs was observed, associated with an increase of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) and macrophage/glia markers (iba1, CD11b and GFAP) levels. In alcohol abuse model, ethanol induced in colon and MP a significant PKS activation accompanied by inflammation/neuroinflammation. CONCLUSIONS We can assume that PKS may be involved in CD development and pain. Furthermore, alcohol appears to activate PKS and may be a trigger factor for CD.
Collapse
Affiliation(s)
- Amodeo Giada
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Galimberti Giulia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Sacerdote Paola
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Franchi Silvia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
4
|
Zhang W, Zhang Y, Hu N, Wang A. Alzheimer's disease-associated inflammatory pathways might contribute to osteoporosis through the interaction between PROK2 and CSF3. Front Neurol 2022; 13:990779. [PMID: 36203970 PMCID: PMC9531648 DOI: 10.3389/fneur.2022.990779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the potential molecular pathways and targets of Alzheimer's disease leading to osteoporosis using bioinformatics tools. The Alzheimer's and osteoporosis microarray gene expression data were retrieved from the Gene Expression Omnibus, and differentially expressed genes in the blood microenvironment related to Alzheimer's disease and osteoporosis were identified. The intersection of the three datasets (GSE97760, GSE168813, and GSE62402) was used to obtain 21 co-expressed targets in the peripheral blood samples in patients with Alzheimer's disease and osteoporosis. Based on the degree algorithm, the top 10 potential core target genes related to these diseases were identified, which included CLEC4D, PROK2, SIGLEC7, PDGFB, PTCRA, ECH1, etc. Two differentially expressed mRNAs, Prokineticin 2 (PROK2) and three colony-stimulating factor 3 (CSF3), were screened in the GSE62402 dataset associated with osteoporosis. Protein–protein rigid docking with ZDOCK revealed that PROK2 and CSF3 could form a stable protein docking model. The interaction of PROK2 and CSF3, core genes related to osteoporosis inflammation, plays an important role in the mechanism of osteoporosis in patients with Alzheimer's. Therefore, abnormalities or alterations in the inflammatory pathways in the peripheral blood samples of Alzheimer's patients may affect the course of osteoporosis.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Joint Sports Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Naixia Hu
- Neurointensive Care Unit, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Anying Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Anying Wang
| |
Collapse
|
5
|
Lattanzi R, Miele R. Versatile Role of Prokineticins and Prokineticin Receptors in Neuroinflammation. Biomedicines 2021; 9:1648. [PMID: 34829877 PMCID: PMC8615546 DOI: 10.3390/biomedicines9111648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/15/2023] Open
Abstract
Prokineticins are a new class of chemokine-like peptides involved in a wide range of biological and pathological activities. In particular, prokineticin 2 (PK2), prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2) play a central role in modulating neuroinflammatory processes. PK2 and PKRs, which are physiologically expressed at very low levels, are strongly upregulated during inflammation and regulate neuronal-glial interaction. PKR2 is mainly overexpressed in neurons, whereas PKR1 and PK2 are mainly overexpressed in astrocytes. Once PK2 is released in inflamed tissue, it is involved in both innate and adaptive responses: it triggers macrophage recruitment, production of pro-inflammatory cytokines, and reduction of anti-inflammatory cytokines. Moreover, it modulates the function of T cells through the activation of PKR1 and directs them towards a pro-inflammatory Th1 phenotype. Since the prokineticin system appears to be upregulated following a series of pathological insults leading to neuroinflammation, we will focus here on the involvement of PK2 and PKRs in those pathologies that have a strong underlying inflammatory component, such as: inflammatory and neuropathic pain, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, obesity, diabetes, and gastrointestinal inflammation.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
6
|
Aurora SK, Shrewsbury SB, Ray S, Hindiyeh N, Nguyen L. A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection. Headache 2021; 61:576-589. [PMID: 33793965 PMCID: PMC8251535 DOI: 10.1111/head.14099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Background Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut–brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions. Objective To summarize the available studies supporting a link between GI comorbidities and migraine, including historical and current scientific evidence, as well as provide evidence that symptoms of GI disorders are also observed outside of migraine attacks during the interictal period. Additionally, the importance of route of administration and formulation of migraine therapies for patients with GI symptoms will be discussed. Methods A literature search of PubMed for articles relating to the relationship between the gut and the brain with no restriction on the publication year was performed. Studies providing scientific support for associations of gastroparesis, functional dyspepsia, and CVS with migraine and the impact these associations may have on migraine treatment were the primary focus. This is a narrative review of identified studies. Results Although the association between migraine and GI disorders has received very little attention in the literature, the existing evidence suggests that they may share a common etiology. In particular, the relationship between migraine, gastric motility, and vomiting has important clinical implications in the treatment of migraine, as delayed gastric emptying and vomiting may affect oral dosing compliance, and thus, the absorption and efficacy of oral migraine treatments. Conclusions There is evidence of a link between migraine and GI comorbidities, including those under the DGBI classification. Many patients do not find adequate relief with oral migraine therapies, which further necessitates increased recognition of GI disorders in patients with migraine by the headache community.
Collapse
Affiliation(s)
- Sheena K Aurora
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA.,Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Sutapa Ray
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA
| | - Nada Hindiyeh
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Linda Nguyen
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Zuena AR, Casolini P, Lattanzi R, Maftei D. Chemokines in Alzheimer's Disease: New Insights Into Prokineticins, Chemokine-Like Proteins. Front Pharmacol 2019; 10:622. [PMID: 31231219 PMCID: PMC6568308 DOI: 10.3389/fphar.2019.00622] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder characterized by the presence of β-amyloid aggregates deposited as senile plaques and by the presence of neurofibrillary tangles of tau protein. To date, there is a broad consensus on the idea that neuroinflammation is one of the most important component in Alzheimer’s disease pathogenesis. Chemokines and their receptors, beside the well-known role in the immune system, are widely expressed in the nervous system, where they play a significant role in the neuroinflammatory processes. Prokineticins are a new family of chemokine-like molecules involved in numerous physiological and pathological processes including immunity, pain, inflammation, and neuroinflammation. Prokineticin 2 (PROK2) and its receptors PKR1 and PKR2 are widely expressed in the central nervous system in both neuronal and glial cells. In Alzheimer’s disease, PROK2 sustains the neuroinflammatory condition and contributes to neurotoxicity, since its expression is strongly upregulated by amyloid-β peptide and reversed by the PKR antagonist PC1. This review aims to summarize the current knowledge on the neurotoxic and/or neuroprotective function of chemokines in Alzheimer’s disease, focusing on the prokineticin system: it represents a new field of investigation that can stimulate the research of innovative pharmacotherapeutic strategies.
Collapse
Affiliation(s)
- Anna Rita Zuena
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Paola Casolini
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Daniela Maftei
- Department of Biochemical Sciences "Alessandro Rossi Fanelli," Sapienza University of Rome, Rome, Italy
| |
Collapse
|