1
|
Kamiura R, Mizuuchi R, Ichihashi N. Plausible pathway for a host-parasite molecular replication network to increase its complexity through Darwinian evolution. PLoS Comput Biol 2022; 18:e1010709. [PMID: 36454734 PMCID: PMC9714742 DOI: 10.1371/journal.pcbi.1010709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022] Open
Abstract
How the complexity of primitive self-replication molecules develops through Darwinian evolution remains a mystery with regards to the origin of life. Theoretical studies have proposed that coevolution with parasitic replicators increases network complexity by inducing inter-dependent replication. Particularly, Takeuchi and Hogeweg proposed a complexification process of replicator networks by successive appearance of a parasitic replicator followed by the addition of a new host replicator that is resistant to the parasitic replicator. However, the feasibility of such complexification with biologically relevant molecules is still unknown owing to the lack of an experimental model. Here, we investigated the plausible complexification pathway of host-parasite replicators using both an experimental host-parasite RNA replication system and a theoretical model based on the experimental system. We first analyzed the parameter space that allows for sustainable replication in various replication networks ranging from a single molecule to three-member networks using computer simulation. The analysis shows that the most plausible complexification pathway from a single host replicator is the addition of a parasitic replicator, followed by the addition of a new host replicator that is resistant to the parasite, consistent with the previous study by Takeuchi and Hogeweg. We also provide evidence that the pathway actually occurred in our previous evolutionary experiment. These results provide experimental evidence that a population of a single replicator spontaneously evolves into multi-replicator networks through coevolution with parasitic replicators.
Collapse
Affiliation(s)
- Rikuto Kamiura
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Mizuuchi
- JST, PRESTO, Kawaguchi, Saitama, Japan
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020; 5:343-360. [PMID: 33083579 PMCID: PMC7564126 DOI: 10.1016/j.synbio.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
As the most abundant biological entities with incredible diversity, bacteriophages (also known as phages) have been recognized as an important source of molecular machines for the development of genetic-engineering tools. At the same time, phages are crucial for establishing and improving basic theories of molecular biology. Studies on phages provide rich sources of essential elements for synthetic circuit design as well as powerful support for the improvement of directed evolution platforms. Therefore, phages play a vital role in the development of new technologies and central scientific concepts. After the RNA world hypothesis was proposed and developed, novel biological functions of RNA continue to be discovered. RNA and its related elements are widely used in many fields such as metabolic engineering and medical diagnosis, and their versatility led to a major role of RNA in synthetic biology. Further development of RNA-based technologies will advance synthetic biological tools as well as provide verification of the RNA world hypothesis. Most synthetic biology efforts are based on reconstructing existing biological systems, understanding fundamental biological processes, and developing new technologies. RNA-based technologies derived from phages will offer abundant sources for synthetic biological components. Moreover, phages as well as RNA have high impact on biological evolution, which is pivotal for understanding the origin of life, building artificial life-forms, and precisely reprogramming biological systems. This review discusses phage-derived RNA-based technologies terms of phage components, the phage lifecycle, and interactions between phages and bacteria. The significance of RNA-based technology derived from phages for synthetic biology and for understanding the earliest stages of biological evolution will be highlighted.
Collapse
Affiliation(s)
- Wenhui Zhang
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Corresponding author. MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Furubayashi T, Ueda K, Bansho Y, Motooka D, Nakamura S, Mizuuchi R, Ichihashi N. Emergence and diversification of a host-parasite RNA ecosystem through Darwinian evolution. eLife 2020; 9:e56038. [PMID: 32690137 PMCID: PMC7378860 DOI: 10.7554/elife.56038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
In prebiotic evolution, molecular self-replicators are considered to develop into diverse, complex living organisms. The appearance of parasitic replicators is believed inevitable in this process. However, the role of parasitic replicators in prebiotic evolution remains elusive. Here, we demonstrated experimental coevolution of RNA self-replicators (host RNAs) and emerging parasitic replicators (parasitic RNAs) using an RNA-protein replication system we developed. During a long-term replication experiment, a clonal population of the host RNA turned into an evolving host-parasite ecosystem through the continuous emergence of new types of host and parasitic RNAs produced by replication errors. The host and parasitic RNAs diversified into at least two and three different lineages, respectively, and they exhibited evolutionary arms-race dynamics. The parasitic RNA accumulated unique mutations, thus adding a new genetic variation to the whole replicator ensemble. These results provide the first experimental evidence that the coevolutionary interplay between host-parasite molecules plays a key role in generating diversity and complexity in prebiotic molecular evolution.
Collapse
Affiliation(s)
- Taro Furubayashi
- Laboratoire Gulliver, CNRS, ESPCI Paris,
PSL Research UniversityParisFrance
| | - Kensuke Ueda
- Department of Life Science, Graduate
School of Arts and Science, The University of
TokyoTokyoJapan
| | - Yohsuke Bansho
- Graduate School of Frontier Biosciences,
Osaka UniversityOsakaJapan
| | - Daisuke Motooka
- Research Institute for Microbial
Diseases, Osaka UniversityOsakaJapan
| | - Shota Nakamura
- Research Institute for Microbial
Diseases, Osaka UniversityOsakaJapan
| | - Ryo Mizuuchi
- Komaba Institute for Science, The
University of TokyoTokyoJapan
- JST,
PRESTOKawaguchiJapan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate
School of Arts and Science, The University of
TokyoTokyoJapan
- Graduate School of Frontier Biosciences,
Osaka UniversityOsakaJapan
- Komaba Institute for Science, The
University of TokyoTokyoJapan
- Universal Biology Institute, The
University of TokyoTokyoJapan
| |
Collapse
|
4
|
Ueda K, Mizuuchi R, Matsuda F, Ichihashi N. A Fusion Method to Develop an Expanded Artificial Genomic RNA Replicable by Qβ Replicase. Chembiochem 2019; 20:2331-2335. [PMID: 31037814 DOI: 10.1002/cbic.201900120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/28/2019] [Indexed: 11/10/2022]
Abstract
RNA-based genomes are used to synthesize artificial cells that harbor genome replication systems. Previously, continuous replication of an artificial genomic RNA that encoded an RNA replicase was demonstrated. The next important challenge is to expand such genomes by increasing the number of encoded genes. However, technical difficulties are encountered during such expansions because the introduction of new genes disrupts the secondary structure of RNA and makes RNA nonreplicable through replicase. Herein, a fusion method that enables the construction of a longer RNA from two replicable RNAs, while retaining replication capability, is proposed. Two replicable RNAs that encode different genes at various positions are fused, and a new parameter, the unreplicable index, which negatively correlates with the replication ability of the fused RNAs better than that of the previous parameter, is determined. The unreplicable index represents the expected value of the number of G or C nucleotides that are unpaired in both the template and complementary strands. It is also observed that some of the constructed fused RNAs replicate efficiently by using the internally translated replicase. The method proposed herein could contribute to the development of an expanded RNA genome that can be used for the purpose of artificial cell synthesis.
Collapse
Affiliation(s)
- Kensuke Ueda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR, 97207, USA
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
5
|
Yao Y, Zhang W, Zhang M, Jin S, Guo Y, Zu Y, Ren K, Wang K, Chen G, Lou C, Wu Q. A Direct RNA-to-RNA Replication System for Enhanced Gene Expression in Bacteria. ACS Synth Biol 2019; 8:1067-1078. [PMID: 31070362 DOI: 10.1021/acssynbio.8b00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A long-standing objective of metabolic engineering has been to exogenously increase the expression of target genes. In this research, we proposed the permanent RNA replication system using DNA as a template to store genetic information in bacteria. We selected Qβ phage as the RNA replication prototype and made many improvements to achieve target gene expression enhancement directly by increasing mRNA abundance. First, we identified the endogenous gene Rnc, the knockout of which significantly improved the RNA replication efficiency. Second, we elucidated the essential elements for RNA replication and optimized the system to make it more easily applicable. Combined with optimization of the host cell and the system itself, we developed a stable RNA-to-RNA replication tool to directly increase the abundance of the target mRNA and subsequently the target protein. Furthermore, it was proven efficient in enhancing the expression of specific proteins and was demonstrated to be applicable in metabolic engineering. Our system has the potential to be combined with any of the existing methods for increasing gene expression.
Collapse
Affiliation(s)
- Yi Yao
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhui Zhang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Zhang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shouhong Jin
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingying Guo
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Peking-Tsinghua Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yumeng Zu
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Ren
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kun Wang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guoqiang Chen
- Peking-Tsinghua Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100081, China
| | - Chunbo Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Kamata K, Toya Y, Shimizu H. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli. Biotechnol Bioeng 2019; 116:1080-1088. [PMID: 30636280 DOI: 10.1002/bit.26923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Mevalonate is a useful metabolite synthesized from three molecules of acetyl-CoA, consuming two molecules of NADPH. Escherichia coli ( E. coli) catabolizes glucose to acetyl-CoA via several routes, such as the Embden-Meyerhof-Parnas (EMP) and the oxidative pentose phosphate (oxPP) pathways. Although the oxPP pathway supplies NADPH, it is disadvantageous in terms of acetyl-CoA supply, compared with the EMP pathway. In this study, the optimal flux ratio between the EMP and oxPP pathways on the mevalonate yield was investigated. Expression level of pgi was controlled by isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible promoter in an engineered mevalonate-producing E. coli strain. The relationship between the flux ratio and mevalonate yield was evaluated by changing the flux ratio by varying IPTG concentration. At the stationary phase, the mevalonate yield was maximum at an EMP flux of 39.7%, and was increased by 25% compared with that with no flux control (EMP flux of 70.4%). The optimal flux ratio was consistent with the theoretical value based on the mass balance of NADPH. The flux ratio between EMP and oxPP pathways affects the synthesis fluxes of mevalonate and acetate from acetyl-CoA. Fine tuning of the flux ratio would be necessary to achieve an optimized production of metabolites that require NADPH.
Collapse
Affiliation(s)
- Kentaro Kamata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Mizuuchi R, Ichihashi N. Sustainable replication and coevolution of cooperative RNAs in an artificial cell-like system. Nat Ecol Evol 2018; 2:1654-1660. [PMID: 30150742 DOI: 10.1038/s41559-018-0650-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
Cooperation among independently replicating molecules is a key phenomenon that allowed the development of complexity during the early evolution of life. Generally, this process is vulnerable to parasitic or selfish entities, which can easily appear and destroy such cooperation. It remains unclear how this fragile cooperation process appeared and has been sustained through evolution. Theoretical studies have indicated that spatial structures, such as compartments, allow sustainable replication and the evolution of cooperative replication, although this has yet to be confirmed experimentally. In this study, we constructed a molecular cooperative replication system, in which two types of RNA, encoding replication or metabolic enzymes, cooperate for their replication in compartments, and we performed long-term replication experiments to examine the sustainability and evolution of the RNAs. We demonstrate that the cooperative relationship of the two RNAs could be sustained at a certain range of RNA concentrations, even when parasitic RNA appeared in the system. We also found that more efficient cooperative RNA replication evolved during long-term replication through seemingly selfish evolution of each RNA. Our results provide experimental evidence supporting the sustainability and robustness of molecular cooperation on an evolutionary timescale.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Norikazu Ichihashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan. .,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Yoshiyama T, Ichii T, Yomo T, Ichihashi N. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci Rep 2018; 8:11867. [PMID: 30089835 PMCID: PMC6082869 DOI: 10.1038/s41598-018-30374-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023] Open
Abstract
Automation is a useful strategy to make laborious evolutionary experiments faster and easier. To date, several types of continuous flow reactors have been developed for the automated evolutionary experiments of viruses and bacteria. However, the development of a flow reactor applicable to compartmentalized in vitro self-replication systems is still a challenge. In this study, we demonstrate automated in vitro evolution of a translation-coupled RNA system in a droplet flow reactor for the first time. This reactor contains approximately 1010 micro-scale droplets (average diameter is approximately 0.8 μm), which continuously fuse and divide among each other at a controllable rate. In the droplets, an RNA (artificial genomic RNA) replicate through the translation of self-encoded RNA replicase with spontaneously appearing parasitic RNA. We performed two automated replication experiments for more than 400 hours with different mixing intensities. We found that several mutations displayed increased frequencies in the genomic RNA populations and the dominant RNA mutants acquired the ability to replicate faster or acquired resistance to the parasitic RNA, demonstrating that Darwinian evolution occurred during the long-term replication. The droplet flow reactor we developed can be a useful tool to perform in vitro evolutionary experiments of translation-coupled systems.
Collapse
Affiliation(s)
- Tomoaki Yoshiyama
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Tetsuo Ichii
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Tetsuya Yomo
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan North Rd., Shanghai, 200062, P.R. China
| | - Norikazu Ichihashi
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|