1
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Rajendran Nair DS, Camarillo JCM, Lu G, Thomas BB. Measuring spatial visual loss in rats by retinotopic mapping of the superior colliculus using a novel multi-electrode array technique. J Neurosci Methods 2024; 405:110095. [PMID: 38403001 PMCID: PMC11363873 DOI: 10.1016/j.jneumeth.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The retinotopic map property of the superior colliculus (SC) is a reliable indicator of visual functional changes in rodents. Electrophysiological mapping of the SC using a single electrode has been employed for measuring visual function in rat and mouse disease models. Single electrode mapping is highly laborious requiring long-term exposure to the SC surface and prolonged anesthetic conditions that can adversely affect the mapping data. NEW METHOD To avoid the above-mentioned issues, we fabricated a fifty-six (56) electrode multi-electrode array (MEA) for rapid and reliable visual functional mapping of the SC. Since SC is a dome-shaped structure, the array was made of electrodes with dissimilar tip lengths to enable simultaneous and uniform penetration of the SC. RESULTS SC mapping using the new MEA was conducted in retinal degenerate (RD) Royal College of Surgeons (RCS) rats and rats with focal retinal damage induced by green diode laser. For SC mapping, the MEA was advanced into the SC surface and the visual activities were recorded during full-filed light stimulation of the eye. Based on the morphological examination, the MEA electrodes covered most of the exposed SC area and penetrated the SC surface at a relatively uniform depth. MEA mapping in RCS rats (n=9) demonstrated progressive development of a scotoma in the SC that corresponded to the degree of photoreceptor loss. MEA mapping in the laser damaged rats demonstrated the presence of a scotoma in the SC area that corresponded to the location of retinal laser injury. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The use of MEA for SC mapping is advantageous over single electrode recording by enabling faster recordings and reducing anesthesia time. This study establishes the feasibility of the MEA technique for rapid and efficient SC mapping, particularly advantageous for evaluating therapeutic effects in retinal degenerate rat disease models.
Collapse
Affiliation(s)
- Deepthi S Rajendran Nair
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States
| | - Juan Carlos-Martinez Camarillo
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, United States
| | - Gengxi Lu
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States
| | - Biju B Thomas
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, United States.
| |
Collapse
|
3
|
Orczyk JJ, Barczak A, O'Connell MN, Kajikawa Y. Saccadic inhibition during free viewing in macaque monkeys. J Neurophysiol 2023; 129:356-367. [PMID: 36629324 PMCID: PMC9902227 DOI: 10.1152/jn.00225.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Through the process of saccadic inhibition, visual events briefly suppress eye movements including microsaccades. In humans, saccadic inhibition has been shown to occur in response to the presentation of parafoveal or peripheral visual distractors during fixation and target-directed saccades and to physical changes of behaviorally relevant visual objects. In monkeys performing tasks that controlled eye movements, saccadic inhibition of microsaccades and target-directed saccades has been shown. Using eye data from three previously published studies, we investigated how saccade rate changed while monkeys were presented with visual stimuli under conditions with loose or no viewing demands. In two conditions, animals passively sat while an LED lamp flashed or screen-wide images appeared in front of them. In the third condition, images were repeated semiperiodically while animals had to maintain their gaze within a wide rectangular area and detect oddballs. Despite animals not being required to maintain fixation or make saccades to particular targets, the onset of visual events led to a temporary reduction of saccade rate across all conditions. Interestingly, saccadic inhibition was found at image offsets as well. These results show that saccadic inhibition occurs in monkeys during free viewing.NEW & NOTEWORTHY We investigated the time courses of saccade rate following visual stimuli during three conditions of free viewing in macaque monkeys. Under all conditions, saccade rate decreased transiently after the onset of visual stimuli. These results suggest that saccadic inhibition occurs during free viewing.
Collapse
Affiliation(s)
- John J Orczyk
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Annamaria Barczak
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Monica N O'Connell
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Yoshinao Kajikawa
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, New York University School of Medicine, New York, New York
| |
Collapse
|
4
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Pauza DH. Saturation of visual responses explains size tuning in rat collicular neurons. Eur J Neurosci 2023; 57:285-309. [PMID: 36451583 DOI: 10.1111/ejn.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
The receptive field of many visual neurons is composed of a central responsive area, the classical receptive field, and a non-classical receptive field, also called the "suppressive surround." A visual stimulus placed in the suppressive surround does not induce any response but modulates visual responses to stimuli within the classical receptive field, usually by suppressing them. Therefore, visual responses become smaller when stimuli exceed the classical receptive field size. The stimulus size inducing the maximal response is called the preferred stimulus size. In cortex, there is good correspondence between the sizes of the classical receptive field and the preferred stimulus. In contrast, in the rodent superior colliculus, the preferred size is often several fold smaller than the classical receptive field size. Here, we show that in the rat superior colliculus, the preferred stimulus size changes as a square root of the contrast inverse and the classical receptive field size is independent of contrast. In addition, responses to annulus were largely independent of the inner hole size. To explain these data, three models were tested: the divisive modulation of the gain by the suppressive surround (the "normalization" model), the difference of the Gaussians, and a divisive model that incorporates saturation to light flux. Despite the same number of free parameters, the model incorporating saturation to light performed the best. Thus, our data indicate that in rats, the saturation to light can be a dominant phenomenon even at relatively low illumination levels defining visual responses in the collicular neurons.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Tkatch T, Rysevaite-Kyguoliene K, Sabeckis I, Sabeckiene D, Pauza DH, Baranauskas G. An efficient rAAV vector for protein expression in cortical parvalbumin expressing interneurons. Sci Rep 2022; 12:17851. [PMID: 36284123 PMCID: PMC9596399 DOI: 10.1038/s41598-022-21867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAV) are extensively used in both research and clinical applications. Despite significant advances, there is a lack of short promoters able to drive the expression of virus delivered genes in specific classes of neurons. We designed an efficient rAAV vector suitable for the rAAV-mediated gene expression in cortical interneurons, mainly in the parvalbumin expressing cells. The vector includes a short parvalbumin promoter and a specialized poly(A) sequence. The degree of conservation of the parvalbumin gene adjoining non-coding regions was used in both the promoter design and the selection of the poly(A) sequence. The specificity was established by co-localizing the fluorescence of the virus delivered eGFP and the antibody for a neuronal marker. rAAV particles were injected in the visual cortex area V1/V2 of adult rats (2-4 months old). Neurons expressing the virus delivered eGFP were mainly positive for interneuronal markers: 66.5 ± 2.8% for parvalbumin, 14.6 ± 2.4% for somatostatin, 7.1 ± 1.2% for vasoactive intestinal peptide, 2.8 ± 0.6% for cholecystokinin. Meanwhile, only 2.1 ± 0.5% were positive for CaMKII, a marker for principal cells in the cortex. The efficiency of the construct was verified by optogenetic experiments: the expression of the virus delivered ChR2 channels was sufficient to evoke by blue light laser high frequency bursts of action potentials in putative fast spiking neurons. We conclude that our promoter allows highly specific expression of the rAAV delivered cDNAs in cortical interneurons with a strong preference for the parvalbumin positive cells.
Collapse
Affiliation(s)
- Tatiana Tkatch
- grid.45083.3a0000 0004 0432 6841Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania ,grid.16753.360000 0001 2299 3507Present Address: Department of Physiology, Northwestern University, Chicago, IL USA
| | | | - Ignas Sabeckis
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Deimante Sabeckiene
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H. Pauza
- grid.45083.3a0000 0004 0432 6841Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gytis Baranauskas
- grid.45083.3a0000 0004 0432 6841Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Baranauskas G. Limited Spatial Spread Explains the Dependence of Visual Response Adaptation on Stimulus Size in Rat Superior Colliculus Neurons. Neuroscience 2020; 451:60-78. [PMID: 33141032 DOI: 10.1016/j.neuroscience.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022]
Abstract
Although adaptation to light occurs in the eye and mainly preserves the full dynamic range of neuronal responses during changing background illumination, it affects the entire visual system and helps to optimize visual information processing. We have shown recently that in rat superior colliculus (SC) neurons adaptation to light acts as a local low-pass filter because, in contrast to the primate SC, in rat collicular neurons adaptation to small stimuli is largely limited to the vicinity of the adaptor stimulus. However, it was unclear whether large visual stimuli would induce the same spatially limited adaptation. We addressed this question by evaluating the effects of 1.8°, 6.2° and 20.8° wide adaptor stimuli on test stimuli of variable size. Single unit recordings in the adult rat SC were employed to estimate the response amplitude. Small, 1.8° and 6.2° adaptors habituated visual responses only to stimuli smaller than the adaptive stimuli. However, the 20.8° adaptor dramatically reduced responses even to test stimuli >3 times wider than the adaptor (up to 70° wide). The latter result may be explained by a nearly complete occlusion by a large adaptor of the neuron's receptive field (RF). All these results are consistent with the idea of a limited spatial spread of adaptation in rat SC neurons that is the consequence of high convergence of retinal inputs, in which small RFs limit the spatial spread of adaptation. It is concluded that, in this limited spatial spread of adaptation, rodent SC resembles higher visual system areas in primates and indicates potential differences in visual information processing between rodents and primates.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
7
|
Gharaei S, Arabzadeh E, Solomon SG. Integration of visual and whisker signals in rat superior colliculus. Sci Rep 2018; 8:16445. [PMID: 30401871 PMCID: PMC6219574 DOI: 10.1038/s41598-018-34661-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Multisensory integration is a process by which signals from different sensory modalities are combined to facilitate detection and localization of external events. One substrate for multisensory integration is the midbrain superior colliculus (SC) which plays an important role in orienting behavior. In rodent SC, visual and somatosensory (whisker) representations are in approximate registration, but whether and how these signals interact is unclear. We measured spiking activity in SC of anesthetized hooded rats, during presentation of visual- and whisker stimuli that were tested simultaneously or in isolation. Visual responses were found in all layers, but were primarily located in superficial layers. Whisker responsive sites were primarily found in intermediate layers. In single- and multi-unit recording sites, spiking activity was usually only sensitive to one modality, when stimuli were presented in isolation. By contrast, we observed robust and primarily suppressive interactions when stimuli were presented simultaneously to both modalities. We conclude that while visual and whisker representations in SC of rat are partially overlapping, there is limited excitatory convergence onto individual sites. Multimodal integration may instead rely on suppressive interactions between modalities.
Collapse
Affiliation(s)
- Saba Gharaei
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, Australia. .,Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia. .,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia.
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| | - Samuel G Solomon
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Institute of Behavioural Neuroscience, University College London, London, UK
| |
Collapse
|
8
|
Bytautiene J, Baranauskas G. Experimentally derived model shows that adaptation acts as a powerful spatiotemporal filter of visual responses in the rat collicular neurons. Sci Rep 2018; 8:8942. [PMID: 29895940 PMCID: PMC5997664 DOI: 10.1038/s41598-018-27331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/31/2018] [Indexed: 11/09/2022] Open
Abstract
Adaptation of visual responses enhances visual information processing mainly by preserving the full dynamic range of neuronal responses during changing light conditions and is found throughout the whole visual system. Although adaptation in the primate superior colliculus neurons has received much attention little is known about quantitative properties of such adaptation in rodents, an increasingly important model in vision research. By employing single unit recordings, we demonstrate that in the rat collicular neurons visual responses are shaped by at least two forms of adaptation. When visual stimuli were repeatedly presented in the same location, visual responses were reduced in the majority of single units. However, when the adaptor stimulus was outside a small diameter receptive field (RF), responses to stimulus onset but not offset were enhanced in the majority of units. Responses to stimulus offset were reduced less and recovered faster than responses to stimulus onset and the effect was limited to a fraction of RF area. Simulations showed that such adaptation acted as a powerful spatiotemporal filter and could explain several tuning properties of collicular neurons. These results demonstrate that in rodents the adaption of visual responses has a complex spatiotemporal structure and can profoundly shape visual information processing.
Collapse
Affiliation(s)
- Juntaute Bytautiene
- Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, 50161, Lithuania
| | - Gytis Baranauskas
- Neurophysiology laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, 50161, Lithuania.
| |
Collapse
|