1
|
Samuvel DJ, Lemasters JJ, Chou CJ, Zhong Z. LP340, a novel histone deacetylase inhibitor, decreases liver injury and fibrosis in mice: role of oxidative stress and microRNA-23a. Front Pharmacol 2024; 15:1386238. [PMID: 38828459 PMCID: PMC11140137 DOI: 10.3389/fphar.2024.1386238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Effective therapy for liver fibrosis is lacking. Here, we examined whether LP340, the lead candidate of a new-generation of hydrazide-based HDAC1,2,3 inhibitors (HDACi), decreases liver fibrosis. Liver fibrosis was induced by CCl4 treatment and bile duct ligation (BDL) in mice. At 6 weeks after CCl4, serum alanine aminotransferase increased, and necrotic cell death and leukocyte infiltration occurred in the liver. Tumor necrosis factor-α and myeloperoxidase markedly increased, indicating inflammation. After 6 weeks, α-smooth muscle actin (αSMA) and collagen-1 expression increased by 80% and 575%, respectively, indicating hepatic stellate cell (HSC) activation and fibrogenesis. Fibrosis detected by trichrome and Sirius-red staining occurred primarily in pericentral regions with some bridging fibrosis in liver sections. 4-Hydroxynonenal adducts (indicator of oxidative stress), profibrotic cytokine transforming growth factor-β (TGFβ), and TGFβ downstream signaling molecules phospho-Smad2/3 also markedly increased. LP340 attenuated indices of liver injury, inflammation, and fibrosis markedly. Moreover, Ski-related novel protein-N (SnoN), an endogenous inhibitor of TGFβ signaling, decreased, whereas SnoN expression suppressor microRNA-23a (miR23a) increased markedly. LP340 (0.05 mg/kg, ig., daily during the last 2 weeks of CCl4 treatment) decreased 4-hydroxynonenal adducts and miR23a production, blunted SnoN decreases, and inhibited the TGFβ/Smad signaling. By contrast, LP340 had no effect on matrix metalloproteinase-9 expression. LP340 increased histone-3 acetylation but not tubulin acetylation, indicating that LP340 inhibited Class-I but not Class-II HDAC in vivo. After BDL, focal necrosis, inflammation, ductular reactions, and portal and bridging fibrosis occurred at 2 weeks, and αSMA and collagen-1 expression increased by 256% and 560%, respectively. LP340 attenuated liver injury, ductular reactions, inflammation, and liver fibrosis. LP340 also decreased 4-hydroxynonenal adducts and miR23a production, prevented SnoN decreases, and inhibited the TGFβ/Smad signaling after BDL. In vitro, LP340 inhibited immortal human hepatic stellate cells (hTERT-HSC) activation in culture (αSMA and collagen-1 expression) as well as miR23a production, demonstrating its direct inhibitory effects on HSC. In conclusions, LP340 is a promising therapy for both portal and pericentral liver fibrosis, and it works by inhibiting oxidative stress and decreasing miR23a.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
| | - John J. Lemasters
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - C. James Chou
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
- Lydex Pharmaceuticals, Mount Pleasant, SC, United States
| | - Zhi Zhong
- Departments of Drug Discovery and Biomedical Sciences, Charleston, SC, United States
| |
Collapse
|
2
|
Akhouri V, Majumder S, Gaikwad AB. The emerging insight into E3 ligases as the potential therapeutic target for diabetic kidney disease. Life Sci 2023; 321:121643. [PMID: 36997061 DOI: 10.1016/j.lfs.2023.121643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Diabetic kidney disease (DKD) is a major diabetic complication and global health concern, occurring in nearly 30 % to 40 % of people with diabetes. Importantly, several therapeutic strategies are being used against DKD; however, available treatments are not uniformly effective and the continuous rise in the prevalence of DKD demands more potential therapeutic approaches or targets. Epigenetic modifiers are regarded for their potential therapeutic effects against DKD. E3 ligases are such epigenetic modifier that regulates the target gene expression by attaching ubiquitin to the histone protein. In recent years, the E3 ligases came up as a potential therapeutic target as it selectively attaches ubiquitin to the substrate proteins in the ubiquitination cascade and modulates cellular homeostasis. The E3 ligases are also actively involved in DKD by regulating the expression of several proteins involved in the proinflammatory and profibrotic pathways. Burgeoning reports suggest that several E3 ligases such as TRIM18 (tripartite motif 18), Smurf1 (Smad ubiquitination regulatory factor 1), and NEDD4-2 (neural precursor cell-expressed developmentally downregulated gene 4-2) are involved in kidney epithelial-mesenchymal transition, inflammation, and fibrosis by regulating respective signaling pathways. However, the various signaling pathways that are regulated by different E3 ligases in the progression of DKD are poorly understood. In this review, we have discussed E3 ligases as potential therapeutic target for DKD. Moreover, different signaling pathways regulated by E3 ligases in the progression of DKD have also been discussed.
Collapse
Affiliation(s)
- Vivek Akhouri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
3
|
Identification of ferroptosis-related genes and pathways in diabetic kidney disease using bioinformatics analysis. Sci Rep 2022; 12:22613. [PMID: 36585417 PMCID: PMC9803720 DOI: 10.1038/s41598-022-26495-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major public health issue because of its refractory nature. Ferroptosis is a newly coined programmed cell death characterized by the accumulation of lipid reactive oxygen species (ROS). However, the prognostic and diagnostic value of ferroptosis-related genes (FRGs) and their biological mechanisms in DKD remain elusive. The gene expression profiles GSE96804, GSE30566, GSE99339 and GSE30528 were obtained and analyzed. We constructed a reliable prognostic model for DKD consisting of eight FRGs (SKIL, RASA1, YTHDC2, SON, MRPL11, HSD17B14, DUSP1 and FOS). The receiver operating characteristic (ROC) curves showed that the ferroptosis-related model had predictive power with an area under the curve (AUC) of 0.818. Gene functional enrichment analysis showed significant differences between the DKD and normal groups, and ferroptosis played an important role in DKD. Consensus clustering analysis showed four different ferroptosis types, and the risk score of type four was significantly higher than that of other groups. Immune infiltration analysis indicated that the expression of macrophages M2 increased significantly, while that of neutrophils and mast cells activated decreased significantly in the high-risk group. Our study identified and validated the molecular mechanisms of ferroptosis in DKD. FRGs could serve as credible diagnostic biomarkers and therapeutic targets for DKD.
Collapse
|
4
|
Peng W, Zhou X, Xu T, Mao Y, Zhang X, Liu H, Liang L, Liu L, Liu L, Xiao Y, Zhang F, Li S, Shi M, Zhou Y, Tang L, Wang Y, Guo B. BMP-7 ameliorates partial epithelial-mesenchymal transition by restoring SnoN protein level via Smad1/5 pathway in diabetic kidney disease. Cell Death Dis 2022; 13:254. [PMID: 35314669 PMCID: PMC8938433 DOI: 10.1038/s41419-022-04529-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is involved in the development of diabetic kidney disease (DKD). Transforming growth factor β1 (TGF-β1) is involved in the extensive fibrosis of renal tissue by facilitating the partial epithelial-mesenchymal transition (EMT), increasing the synthesis of extracellular matrix (ECM), inhibiting degradation, inducing apoptosis of renal parenchyma cells, and activating renal interstitial fibroblasts and inflammatory cells. Recent studies indicated that bone morphogenetic protein-7 (BMP-7) upregulated the expression of endogenous SnoN against renal TIF induced by TGF-β1 or hyperglycemia. Nevertheless, the mechanisms underlying the BMP-7-mediated restoration of SnoN protein level remains elusive. The present study demonstrated the increased expression of BMP-7 in diabetic mellitus (DM) mice by hydrodynamic tail vein injection of overexpressed BMP-7 plasmid, which attenuated the effects of DM on kidney in mice. Partial tubular EMT and the accumulation of Collagen-III were resisted in DM mice that received overexpressed BMP-7 plasmid. Similar in vivo results showed that BMP-7 was competent to alleviate NRK-52E cells undergoing partial EMT in a high-glucose milieu. Furthermore, exogenous BMP-7 activated the Smad1/5 pathway to promote gene transcription of SnoN and intervened ubiquitination of SnoN; both effects repaired the SnoN protein level in renal tubular cells and kidney tissues of DM mice. Therefore, these findings suggested that BMP-7 could upregulate SnoN mRNA and protein levels by activating the classical Smad1/5 pathway to refrain from the partial EMT of renal tubular epithelial cells and the deposition of ECM in DKD-induced renal fibrosis.
Collapse
|
5
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
6
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
7
|
Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021; 25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiaqing Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Wang Y, Zhang X, Mao Y, Liang L, Liu L, Peng W, Liu H, Xiao Y, Zhang Y, Zhang F, Shi M, Liu L, Guo B. Smad2 and Smad3 play antagonistic roles in high glucose-induced renal tubular fibrosis via the regulation of SnoN. Exp Mol Pathol 2020; 113:104375. [PMID: 31917288 DOI: 10.1016/j.yexmp.2020.104375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/10/2019] [Accepted: 01/04/2020] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes mellitus.The main pathological features of DN include glomerular sclerosis and renal tubular interstitial fibrosis, which results in epithelial mesenchymal transition (EMT) and excessive extracellular matrix (ECM) deposition.Transforming growth factor-β1(TGF-β1) is a critical factor that regulates the manifestation of renal fibrosis.Smad2 and Smad3 are the main downstream of the TGF-β1 pathway. Ski-related novel protein N(SnoN) is a negative regulator of TGF-β1, and inhibits the activation of the TGF-β1/Smad2/3 signalling pathway. In this study, the expression of Smad2 and Smad3 proteins, SnoN mRNA, SnoN proteins, and the ubiquitination levels of SnoN were determined in DN rats and renal tubular epithelial cells(NRK52E cells). Knockdown and overexpression of Smad2 or Smad3 in NRK52E cells were used to investigate the specific roles of Smad2 and Smad3 in the development of high glucose-induced renal tubular fibrosis, with a specific focus on their effect on the regulation of SnoN expression. Our study demonstrated that Smad3 could inhibit SnoN expression and increase ECM deposition in NRK52E cells, to promote high glucose-induced renal tubular fibrosis. In contrast, Smad2 could induce SnoN expression and reduce ECM deposition, to inhibit high glucose-induced fibrosis. The underlying mechanism involves regulation of SnoN expression. These findings provide a novel mechanism to understanding the significant role of the TGF-β1/ Smad2/3 pathway in DN.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingying Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Wang Y, Mao Y, Zhang X, Liu H, Peng W, Liang L, Shi M, Xiao Y, Zhang Y, Zhang F, Yan R, Guo B. TAK1 may promote the development of diabetic nephropathy by reducing the stability of SnoN protein. Life Sci 2019; 228:1-10. [PMID: 31028803 DOI: 10.1016/j.lfs.2019.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
AIMS This study aimed to investigate the role of transforming growth factor-β-activated protein kinase 1(TAK1) in the development of diabetic nephropathy (DN) by regulating the protein stability of Ski-related novel protein N(SnoN). MAIN METHODS A combination of in vivo and in vitro model systems was used to investigate how TAK1 regulated the expression of SnoN protein in DN. The study determined the effects of modulating the expression or activity of TAK1 on the SnoN protein level and its influence on the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. KEY FINDINGS Under the high-glucose condition, the activation of TGF-β1/TAK1-induced phosphorylation and ubiquitination of SnoN protein resulted in reduced SnoN protein level as a consequence of enhanced SnoN degradation, which promoted EMT and ECM deposition in renal tubular epithelial cells. The study showed that TAK1 impaired SnoN protein level by decreasing the protein stability of SnoN. SIGNIFICANCE TAK1 mediated the phosphorylation of SnoN, resulting in SnoN ubiquitination and eventual degradation, which enhanced EMT and ECM deposition to promote renal fibrosis during DN.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanwen Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiaohuan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Huiming Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Luqun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingjun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yingying Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Fan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
10
|
Wang Y, Liu L, Peng W, Liu H, Liang L, Zhang X, Mao Y, Zhou X, Shi M, Xiao Y, Zhang F, Zhang Y, Liu L, Yan R, Guo B. Ski-related novel protein suppresses the development of diabetic nephropathy by modulating transforming growth factor-β signaling and microRNA-21 expression. J Cell Physiol 2019; 234:17925-17936. [PMID: 30847937 DOI: 10.1002/jcp.28425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Unveiling the mechanisms that drive the pathological phenotypes of diabetic nephropathy (DN) could help develop new effective therapeutics for this ailment. Transforming growth factor-β1 (TGF-β1)/Smad3 signaling is aberrantly induced in DN, leading to elevated microRNA-21 (miR-21) expression and tissue fibrosis. Ski-related novel protein (SnoN) negatively regulates the TGF-β pathway, but the relationship between SnoN and miR-21 has not been described in the context of DN. In this study, this association was investigated in vivo (streptozotocin-induced rat model of diabetes) and in vitro (NRK-52E model system under high glucose conditions). In both model systems, we observed reduced amounts of the SnoN protein and elevated miR-21 amounts, indicative of an inverse relationship. These changes in SnoN and miR-21 amounts were accompanied by reduced E-cadherin and elevated α-smooth muscle actin and collagen III levels, consistent with epithelial to mesenchymal transition (EMT). In vitro overexpression of SnoN in NRK-52E cells downregulated miR-21 at the transcriptional and posttranscriptional levels and repressed EMT and extracellular matrix (ECM) deposition. In contrast, knockdown of SnoN resulted in miR-21 upregulation, particularly at the transcriptional level. We further demonstrated that overexpression and inhibition of miR-21 promoted and suppressed EMT and ECM deposition, respectively, without affecting SnoN levels. Our results indicated that SnoN suppresses the development of DN as well as renal fibrosis by downregulating miR-21, and therefore represents a novel and promising therapeutic target for DN.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xingcheng Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yingying Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lirong Liu
- Department of Clinical Hematology, School of Medical Diagnostics, Guizhou Medical University, Guiyang, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Esfandiari A, Pourghassem Gargari B, Noshad H, Sarbakhsh P, Mobasseri M, Barzegari M, Arzhang P. The effects of vitamin D 3 supplementation on some metabolic and inflammatory markers in diabetic nephropathy patients with marginal status of vitamin D: A randomized double blind placebo controlled clinical trial. Diabetes Metab Syndr 2019; 13:278-283. [PMID: 30641712 DOI: 10.1016/j.dsx.2018.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022]
Abstract
AIMS Diabetic nephropathy is known to be an independent risk factor in the progression of renal and cardiovascular disorders. Due to the association between vitamin D deficiency and diabetic nephropathy, vitamin D deficiency in the diabetic nephropathy population, this study conducted to examine the effects of Vitamin D3 on metabolic and inflammatory parameters in patients with diabetic nephropathy. METHODS This eight-week, randomized, double-blind, placebo-controlled trial was carried out on 50 diabetic nephropathy patients with marginal status of vitamin D. Participants were randomly assigned to two groups: control and intervention. Participants received a vitamin D3 (50000 IU) supplement weekly on a specific day. Fasting blood samples were collected from all patients at their entry to the study, and eight weeks after intervention. RESULTS Analyses showed significance differences in physical activity between the intervention and placebo groups (P = 0.018). There were no significant differences between the percentage changes of HbA1c, insulin and, inflammatory parameters such as TNF-α and IL-6 (P > 0.05), while the percentage change of FBS was significantly higher in the placebo group compared to the treatment one (P < 0.0001). Lower levels of FBS (P < 0.0001), insulin (P < 0.069), HOMA-IR (P < 0.001), TNF-α (P< 0.002) and IL-6 (P < 0.037) were found after supplementation in treatment group. However, the phosphorous and protein percentage change in urine were lower (P = 0.07) and higher (P = 0.003) between groups. CONCLUSIONS It was found that vitamin D supplementation can be regarded as an effective way to prevent the progression of diabetic nephropathy by reducing levels of proteinuria, and inflammatory markers such as TNF-α and IL-6.
Collapse
Affiliation(s)
- A Esfandiari
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - B Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| | - H Noshad
- Chronic Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - P Sarbakhsh
- Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - M Mobasseri
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disorders, Imam Reza Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - M Barzegari
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - P Arzhang
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
12
|
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin‑induced diabetic rats. Mol Med Rep 2018; 19:423-431. [PMID: 30431100 PMCID: PMC6297769 DOI: 10.3892/mmr.2018.9635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the antifibrogenic effects of genistein (GEN) on the kidney in streptozotocin (STZ)-induced diabetic rats and to determine the associated mechanisms. Rats were randomized into four groups: Normal control (N), STZ (S), L (STZ + low-dose GEN) and H (STZ + high-dose GEN). After 8 weeks, the fasting blood glucose (FBG) level, the ratio of kidney weight to body weight (renal index), 24-h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), renal total antioxidant capacity (T-AOC), superoxide dismutase (SOD), lipid peroxidation (LPO), malondialdehyde (MDA) and hydroxyproline (Hyp) contents were measured. The histomorphology and ultrastructure of the kidney were also assessed. In addition, mRNA expression levels of transforming growth factor-β1 (TGF-β1) and protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), TGF-β1, mothers against decapentaplegic homolog 3 (Smad3), phosphorylated (p)-Smad3 and collagen IV were estimated. Compared with group N, the levels of FBG, renal index, 24-h urine protein, BUN, SCr, LPO, MDA and Hyp were increased, whereas the levels of T-AOC and SOD were decreased in group S. The structure of renal tissue was damaged, and the expression of Nrf2, HO-1 and NQO1 were reduced, whereas the expression of TGF-β1, Smad3, p-Smad3 and collagen IV were increased in group S. Compared with group S, the aforementioned indices were improved in groups L and H. In conclusion, GEN exhibited reno-protective effects in diabetic rats and its mechanisms may be associated with the inhibition of oxidative stress by activating the Nrf2-HO-1/NQO1 pathway, and the alleviation of renal fibrosis by suppressing the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Rui Yang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Fen Liu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shan-Feng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lei Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
13
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
14
|
Abstract
Diabetes is a condition that is not completely treatable but life of a diabetic patient can be smoothed by preventing or delaying the associate conditions like diabetic retinopathy, nephropathy, impaired wound healing process, etc. Apart from conventional methods to regulate diabetic condition, new techniques using siRNA have been emerged to prevent the associated conditions. This paper focuses on how siRNA used as a tool to silence the expression of genes which plays critical role in pathogenesis of these conditions. A marked improvement in wound-healing process of diabetic patients has been observed with siRNA treatment by silencing of Keap1 gene. Glucagon plays critical role in glucose homoeostasis and increases blood glucose level during hypoglycaemia. Glucose homoeostasis is impaired in diabetic patient and suppressing the expression of glucagon secretion with siRNA is used to suppress the progress of diabetes. Similarly, silencing expression of several factors has demonstrated improvement of treatment of diabetic nephropathy, retinopathy and inflammation by the use of siRNA.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| | - Chirag Patel
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
15
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101:670-681. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has emerged as a major cause of morbidity and mortality worldwide. Interstitial fibrosis, glomerulosclerosis and inflammation play the central role in the pathogenesis and progression of CKD to end stage renal disease (ESRD). Transforming growth factor-β1 (TGF-β1) is the central mediator of renal fibrosis and numerous studies have focused on inhibition of TGF-β1 and its downstream targets for treatment of kidney disease. However, blockade of TGF-β1 has not been effective in the treatment of CKD patients. This may be, in part due to anti-inflammatory effect of TGF-β1. The Smad signaling system plays a central role in regulation of TGF-β1 and TGF-β/Smad pathway plays a key role in progressive renal injury and inflammation. This review provides an overview of the role of TGF-β/Smad signaling pathway in the pathogenesis of renal fibrosis and inflammation and an effective target of anti-fibrotic therapies. Under pathological conditions, Smad2 and Smad3 expression are upregulated, while Smad7 is downregulated. In addition to TGF-β1, other pathogenic mediators such as angiotensin II and lipopolysaccharide activate Smad signaling through both TGF-β-dependent and independent pathways. Smads also interact with other pathways including nuclear factor kappa B (NF-κB) to regulate renal inflammation and fibrosis. In the context of renal fibrosis and inflammation, Smad3 exerts profibrotic effect, whereas Smad2 and Smad7 play renal protective roles. Smad4 performs its dual functions by transcriptionally promoting Smad3-dependent renal fibrosis but simultaneously suppressing NF-κB-mediated renal inflammation via Smad7-dependent mechanism. Furthermore, TGF-β1 induces Smad3 expression to regulate microRNAs and Smad ubiquitination regulatory factor (Smurf) to exert its pro-fibrotic effect. In conclusion, TGF-β/Smad signaling is an important pathway that mediates renal fibrosis and inflammation. Thus, an effective anti-fibrotic therapy via inhibition of Smad3 and upregulation of Smad7 signaling constitutes an attractive approach for treatment of CKD.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Tian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - De-Wen Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hui Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
16
|
Xu H, Sun F, Li X, Sun L. Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN. Hum Cell 2017; 31:22-32. [PMID: 28707079 DOI: 10.1007/s13577-017-0180-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
It has been reported that transforming growth factor-β1 (TGF-β1) signaling plays an important role in the development of diabetic nephropathy (DN). The nuclear transcription co-repressor Ski-related novel protein N (SnoN) is a critical negative regulator of TGF-β1/Smad signal pathway, involving in tubule epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and tubulointerstitial fibrosis. In this study, we focused on miR-23a as a regulator of SnoN. Our purpose is to study the effects of miR-23a on high glucose (HG)-induced EMT process and ECM deposition in HK2 cells. We found that miR-23a was up-regulated in renal tissues of diabetic patients and HG-induced HK2 cells. Besides, the high level of miR-23a was closely associated with decreased SnoN expression. Knockdown of miR-23a increased SnoN expression and in turn suppressed HG-induced EMT and renal fibrogenesis. Introduction of miR-23a decreased SnoN expression and enhanced the profibrogenic effects of HG on HK2 cells. Next, bioinformatics analysis predicted that the SnoN was a potential target gene of miR-23a. Luciferase reporter assay demonstrated that miR-23a could directly target SnoN. We demonstrated that overexpression of SnoN was sufficient to inhibit HG-induced EMT and renal fibrogenesis in HK2 cells. Furthermore, down-regulation of SnoN partially reversed the protective effect of miR-23a knockdown on HG-induced EMT and renal fibrogenesis in HK2 cells. Collectively, miR-23a and SnoN significantly impact on the progression of HG-induced EMT and renal fibrogenesis in vitro, and they may represent novel targets for the prevention strategies of renal fibrosis in the context of DN.
Collapse
Affiliation(s)
- Haiping Xu
- Urology Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Hebei, 061000, People's Republic of China.
| | - Fuyun Sun
- Urology Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Hebei, 061000, People's Republic of China
| | - Xiuli Li
- Urology Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Hebei, 061000, People's Republic of China
| | - Lina Sun
- Urology Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Hebei, 061000, People's Republic of China
| |
Collapse
|