1
|
Kim SH, Lee YN, Nam GS, Park JY, Lee S, Son M. A new exceptionally well-preserved basal actinopterygian fish in the juvenile stage from the Upper Triassic Amisan Formation of South Korea. Sci Rep 2024; 14:317. [PMID: 38172381 PMCID: PMC10764774 DOI: 10.1038/s41598-023-50803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
The study of the large paraphyletic group of extinct 'palaeoniscoid' fishes has shed light on the diversity and evolutionary history of basal actinopterygians. However, only a little ontogenetic information about 'palaeoniscoids' is known because their records in the early stages of development are scarce. Here, we report on a growth series of 'palaeoniscoids' in the juvenile stage from the Upper Triassic Amisan Formation of South Korea. Fourteen specimens, including five counterpart specimens, represent a new taxon, Megalomatia minima gen. et sp. nov., exhibiting ontogeny and exceptional preservation with the eyes possibly containing the crystalline lens, the otoliths, and the lateral line canals without covering scales. This discovery allows us to discuss the adaptations and evolution of basal actinopterygians in more detail than before. The otoliths in situ of Megalomatia support the previous interpretation that basal actinopterygians have a sagitta as the largest otolith. The trunk lateral line canal, which runs under the scales instead of passing through them, represents a plesiomorphic gnathostome trait. Notably, the large protruded eyes suggest that Megalomatia probably has binocular vision, which would have played a significant role in targeting and catching prey with the primitive jaw structure. In addition, the firstly formed skeletal elements such as the jaws, pectoral girdle, and opercular series, and the posteroanterior pattern of squamation development are likely linked to the adaptation of young individuals to increase their viability for feeding, respiration, and swimming.
Collapse
Affiliation(s)
- Su-Hwan Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Gi-Soo Nam
- Gongju National University of Education, Gongju, South Chungcheong, 32553, South Korea
| | - Jin-Young Park
- Gwacheon National Science Museum, Gwacheon-si, Gyeonggi-do, 13817, South Korea
| | - Sungjin Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Minyoung Son
- Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
2
|
Cui X, Friedman M, Yu Y, Zhu YA, Zhu M. Bony-fish-like scales in a Silurian maxillate placoderm. Nat Commun 2023; 14:7622. [PMID: 37993457 PMCID: PMC10665347 DOI: 10.1038/s41467-023-43557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Major groups of jawed vertebrates exhibit contrasting conditions of dermal plates and scales. But the transition between these conditions remains unclear due to rare information on taxa occupying key phylogenetic positions. The 425-million-year-old fish Entelognathus combines an unusual mosaic of characters typically associated with jawed stem gnathostomes or crown gnathostomes. However, only the anterior part of the exoskeleton was previously known for this very crownward member of the gnathostome stem. Here, we report a near-complete post-thoracic exoskeleton of Entelognathus. Strikingly, its scales are large and some are rhomboid, bearing distinctive peg-and-socket articulations; this combination was previously only known in osteichthyans and considered a synapomorphy of that group. The presence in Entelognathus of an anal fin spine, previously only found in some stem chondrichthyans, further illustrates that many characters previously thought to be restricted to specific lineages within the gnathostome crown likely arose before the common ancestor of living jawed vertebrates.
Collapse
Affiliation(s)
- Xindong Cui
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yilun Yu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - You-An Zhu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
| | - Min Zhu
- CAS Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Charest F, Mondéjar Fernández J, Grünbaum T, Cloutier R. Evolution of median fin patterning and modularity in living and fossil osteichthyans. PLoS One 2023; 18:e0272246. [PMID: 36921006 PMCID: PMC10016723 DOI: 10.1371/journal.pone.0272246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Morphological and developmental similarities, and interactions among developing structures are interpreted as evidences of modularity. Such similarities exist between the dorsal and anal fins of living actinopterygians, on the anteroposterior axis: (1) both fins differentiate in the same direction [dorsal and anal fin patterning module (DAFPM)], and (2) radials and lepidotrichia differentiate in the same direction [endoskeleton and exoskeleton module (EEM)]. To infer the evolution of these common developmental patternings among osteichthyans, we address (1) the complete description and quantification of the DAFPM and EEM in a living actinopterygian (the rainbow trout Oncorhynchus mykiss) and (2) the presence of these modules in fossil osteichthyans (coelacanths, lungfishes, porolepiforms and 'osteolepiforms'). In Oncorhynchus, sequences of skeletal elements are determined based on (1) apparition (radials and lepidotrichia), (2) chondrification (radials), (3) ossification (radials and lepidotrichia), and (4) segmentation plus bifurcation (lepidotrichia). Correlations are then explored between sequences. In fossil osteichthyans, sequences are determined based on (1) ossification (radials and lepidotrichia), (2) segmentation, and (3) bifurcation of lepidotrichia. Segmentation and bifurcation patterns were found crucial for comparisons between extant and extinct osteichthyan taxa. Our data suggest that the EEM is plesiomorphic at least for actinopterygians, and the DAFPM is plesiomorphic for osteichthyans, with homoplastic dissociation. Finally, recurrent patterns suggest the presence of a Lepidotrichia Patterning Module (LPM).
Collapse
Affiliation(s)
- France Charest
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
- Parc National de Miguasha, Nouvelle, Québec, Canada
| | - Jorge Mondéjar Fernández
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Centre de Recherche en Paléontologie–Paris, Département Origines & Évolution, Muséum National d’Histoire Naturelle, UMR 7207 (MNHN–Sorbonne Université–CNRS), Paris, France
| | - Thomas Grünbaum
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
4
|
Wang Y, Zhu M. Squamation and scale morphology at the root of jawed vertebrates. eLife 2022; 11:76661. [PMID: 35674421 PMCID: PMC9177148 DOI: 10.7554/elife.76661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Placoderms, as the earliest branching jawed vertebrates, are crucial to understanding how the characters of crown gnathostomes comprising Chondrichthyes and Osteichthyes evolved from their stem relatives. Despite the growing knowledge of the anatomy and diversity of placoderms over the past decade, the dermal scales of placoderms are predominantly known from isolated material, either morphologically or histologically, resulting in their squamation being poorly understood. Here we provide a comprehensive description of the squamation and scale morphology of a primitive taxon of Antiarcha (a clade at the root of jawed vertebrates), Parayunnanolepis xitunensis, based on the virtual restoration of an articulated specimen by using X-ray computed tomography. Thirteen morphotypes of scales are classified to exhibit how the morphology changes with their position on the body in primitive antiarchs, based on which nine areas of the post-thoracic body are distinguished to show their scale variations in the dorsal, flank, ventral, and caudal lobe regions. In this study, the histological structure of yunnanolepidoid scales is described for the first time based on disarticulated scales from the type locality and horizon of P. xitunensis. The results demonstrate that yunnanolepidoid scales are remarkably different from their dermal plates as well as euantiarch scales in lack of a well-developed middle layer. Together, our study reveals that the high regionalization of squamation and the bipartite histological structure of scales might be plesiomorphic for antiarchs, and jawed vertebrates in general.
Collapse
Affiliation(s)
- Yajing Wang
- School of Earth Sciences and Engineering, Nanjing University
| | - Min Zhu
- School of Earth Sciences and Engineering, Nanjing University
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences
- CAS Center for Excellence in Life and Paleoenvironment
| |
Collapse
|
5
|
Mondéjar Fernández J, Meunier FJ, Cloutier R, Clément G, Laurin M. Life history and ossification patterns in Miguashaia bureaui reveal the early evolution of osteogenesis in coelacanths. PeerJ 2022; 10:e13175. [PMID: 35411253 PMCID: PMC8994491 DOI: 10.7717/peerj.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
The study of development is critical for revealing the evolution of major vertebrate lineages. Coelacanths have one of the longest evolutionary histories among osteichthyans, but despite access to extant representatives, the onset of their weakly ossified endoskeleton is still poorly understood. Here we present the first palaeohistological and skeletochronological study of Miguashaia bureaui from the Upper Devonian of Canada, pivotal for exploring the palaeobiology and early evolution of osteogenesis in coelacanths. Cross sections of the caudal fin bones show that the cortex is made of layers of primary bone separated by lines of arrested growth, indicative of a cyclical growth. The medullary cavity displays remnants of calcified cartilage associated with bony trabeculae, characteristic of endochondral ossification. A skeletochronological analysis indicates that rapid growth during a short juvenile period was followed by slower growth in adulthood. Our new analysis highlights the life history and palaeoecology of Miguashaia bureaui and reveals that, despite differences in size and habitat, the poor endoskeletal ossification known in the extant Latimeria chalumnae can be traced back at least 375 million years ago.
Collapse
Affiliation(s)
- Jorge Mondéjar Fernández
- Division Paleontology and Historical Geology, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany,Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| | - François J. Meunier
- Laboratoire de Biologie des Organismes et des Écosystèmes Aquatiques (BOREA), UMR 8067, MNHN, CNRS, SU, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Paris, France
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Gaël Clément
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| | - Michel Laurin
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Atake OJ, Eames BF. Mineralized Cartilage and Bone-Like Tissues in Chondrichthyans Offer Potential Insights Into the Evolution and Development of Mineralized Tissues in the Vertebrate Endoskeleton. Front Genet 2021; 12:762042. [PMID: 35003210 PMCID: PMC8727550 DOI: 10.3389/fgene.2021.762042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.
Collapse
Affiliation(s)
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Dearden RP, Giles S. Diverse stem-chondrichthyan oral structures and evidence for an independently acquired acanthodid dentition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210822. [PMID: 34804566 PMCID: PMC8580420 DOI: 10.1098/rsos.210822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The teeth of sharks famously form a series of transversely organized files with a conveyor-belt replacement that are borne directly on the jaw cartilages, in contrast to the dermal plate-borne dentition of bony fishes that undergoes site-specific replacement. A major obstacle in understanding how this system evolved is the poorly understood relationships of the earliest chondrichthyans and the profusion of morphologically and terminologically diverse bones, cartilages, splints and whorls that they possess. Here, we use tomographic methods to investigate mandibular structures in several early branching 'acanthodian'-grade stem-chondrichthyans. We show that the dentigerous jaw bones of disparate genera of ischnacanthids are united by a common construction, being growing bones with non-shedding dentition. Mandibular splints, which support the ventro-lateral edge of the Meckel's cartilage in some taxa, are formed from dermal bone and may be an acanthodid synapomorphy. We demonstrate that the teeth of Acanthodopsis are borne directly on the mandibular cartilage and that this taxon is deeply nested within an edentulous radiation, representing an unexpected independent origin of teeth. Many or even all of the range of unusual oral structures may be apomorphic, but they should nonetheless be considered when building hypotheses of tooth and jaw evolution, both in chondrichthyans and more broadly.
Collapse
Affiliation(s)
- Richard P. Dearden
- CR2P, Centre de Recherche en Paléontologie–Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, CP 38, 57 Rue Cuvier, F75231 Paris Cedex 05, France
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
8
|
Mondéjar‐Fernández J, Meunier FJ, Cloutier R, Clément G, Laurin M. A microanatomical and histological study of the scales of the Devonian sarcopterygian Miguashaia bureaui and the evolution of the squamation in coelacanths. J Anat 2021; 239:451-478. [PMID: 33748974 PMCID: PMC8273612 DOI: 10.1111/joa.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Coelacanths have traditionally been described as morphologically conservative throughout their long evolutionary history, which spans more than 400 million years. After an initial burst during the Devonian, a morphological stasis was long thought to have prevailed since the Carboniferous, as shown by the extant Latimeria. New fossil discoveries have challenged this view, with punctual and sometimes unusual departures from the general coelacanth Bauplan. The dermal skeleton is considered to represent one, if not the main, example of morphological stasis in coelacanth evolution and as a consequence, has remained poorly surveyed. The lack of palaeohistological data on the dermoskeleton has resulted in a poor understanding of the early establishment and evolution of the coelacanth squamation. Here we describe the scales of Miguashaia bureaui from the Upper Devonian of Miguasha, Québec (Canada), revealing histological data for a Palaeozoic coelacanth in great detail and adding to our knowledge on the dermal skeleton of sarcopterygians. Miguashaia displays rounded scales ornamented by tubercules and narrow ridges made of dentine and capped with enamel. At least two generations of superimposed odontodes occur, which is reminiscent of the primitive condition of stem osteichthyans like Andreolepis or Lophosteus, and onychodonts like Selenodus. The middle vascular layer is well developed and shows traces of osteonal remodelling. The basal plate consists of a fully mineralised lamellar bone with a repetitive rotation pattern every five layers indicating a twisted plywood-like arrangement of the collagen plies. Comparisons with the extant Latimeria and other extinct taxa show that these features are consistently conserved across coelacanth evolution with only minute changes in certain taxa. The morphological and histological features displayed in the scales of Miguashaia enable us to draw a comprehensive picture of the onset of the coelacanth squamation and to propose and discuss evolutionary scenarios for the coelacanth dermoskeleton.
Collapse
Affiliation(s)
- Jorge Mondéjar‐Fernández
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
- Senckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany
| | - François J. Meunier
- Département Adaptations du VivantFRE BOREA 2030, (MNHN–Sorbonne Université–Univ. Caen Normandie–Univ. Antilles–CNRS–IRD)Muséum national d'Histoire naturelleParisFrance
| | | | - Gaël Clément
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
| | - Michel Laurin
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
| |
Collapse
|
9
|
Davesne D, Meunier FJ, Schmitt AD, Friedman M, Otero O, Benson RBJ. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism. Biol Rev Camb Philos Soc 2019; 94:1338-1363. [DOI: 10.1111/brv.12505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Donald Davesne
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - François J. Meunier
- BOREA (UMR 7208 CNRS, IRD, MNHN, Sorbonne Université)Muséum national d'Histoire naturelle 75005 Paris France
| | - Armin D. Schmitt
- Department of Earth SciencesUniversity of Oxford OX1 3AN Oxford U.K
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of Michigan Ann Arbor MI 48109‐1079 U.S.A
| | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS)Université de Poitiers 86000 Poitiers France
| | | |
Collapse
|
10
|
Snyder D, Turner S, Burrow CJ, Daeschler EB. “Gyracanthus”sherwoodi(Gnathostomata, Gyracanthidae) from the Late Devonian of North America. PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 2017. [DOI: 10.1635/053.165.0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Snyder
- Middle Georgia State University, 1900 Bellevue Road, Dublin, GA, 31021 USA
| | - Susan Turner
- Geoscience Programme, Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia
| | - Carole J. Burrow
- Geoscience Programme, Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia
| | - Edward B. Daeschler
- Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkvay, Philadelphia, PA 19103, USA
| |
Collapse
|
11
|
Chevrinais M, Sire JY, Cloutier R. Unravelling the ontogeny of a Devonian early gnathostome, the "acanthodian" Triazeugacanthus affinis (eastern Canada). PeerJ 2017; 5:e3969. [PMID: 29094000 PMCID: PMC5661438 DOI: 10.7717/peerj.3969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/08/2017] [Indexed: 12/01/2022] Open
Abstract
The study of vertebrate ontogenies has the potential to inform us of shared developmental patterns and processes among organisms. However, fossilised ontogenies of early vertebrates are extremely rare during the Palaeozoic Era. A growth series of the Late Devonian “acanthodian” Triazeugacanthus affinis, from the Miguasha Fossil-Fish Lagerstätte, is identified as one of the best known early vertebrate fossilised ontogenies given the exceptional preservation, the large size range, and the abundance of specimens. Morphological, morphometric, histological and chemical data are gathered on a growth series of Triazeugacanthus ranging from 4 to 52 mm in total length. The developmental trajectory of this Devonian “acanthodian” is characteristic of fishes showing a direct development with alternating steps and thresholds. Larvae show no squamation but a progressive appearance of cartilaginous neurocranial and vertebral elements, and appendicular elements, whereas juveniles progress in terms of ossification and squamation. The presence of cartilaginous and bony tissues, discriminated on histological and chemical signatures, shows a progressive mineralisation of neurocranial and vertebral elements. Comparison among different body proportions for larvae, juveniles and adults suggest allometric growth in juveniles. Because of the phylogenetic position of “acanthodians”, Triazeugacanthus ontogeny informs us about deep time developmental conditions in gnathostomes.
Collapse
Affiliation(s)
- Marion Chevrinais
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Canada
| | - Jean-Yves Sire
- CNRS-UMR 7138-Evolution Paris-Seine IBPS, Université Pierre et Marie Curie, Paris, France
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Canada
| |
Collapse
|