1
|
Kollati Y, Akella RRD, Naushad SM, Patel RK, Reddy GB, Dirisala VR. Molecular insights into the role of genetic determinants of congenital hypothyroidism. Genomics Inform 2021; 19:e29. [PMID: 34638176 PMCID: PMC8510868 DOI: 10.5808/gi.21034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: ‒15 vs. ‒13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG (0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.
Collapse
Affiliation(s)
- Yedukondalu Kollati
- Department of Biotechnology, Vignan's University, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Radha Rama Devi Akella
- Department of Genetics, Rainbow Children's Hospital, Banjara Hills, Hyderabad, Telangana 500009, India.,Department of Biochemical Genetics and Pharmacogenomics, Sandor Speciality Diagnostics Pvt. Ltd, Banjara Hills, Hyderabad, Telangana 500034, India
| | - Shaik Mohammad Naushad
- Department of Biochemical Genetics and Pharmacogenomics, Sandor Speciality Diagnostics Pvt. Ltd, Banjara Hills, Hyderabad, Telangana 500034, India
| | - Rajesh K Patel
- Department of Genetics, Genetic Group of Gujarat Diagnostic Centre, Mehsana, Gujarat 384002, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's University, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| |
Collapse
|
2
|
Ozretić P, da Silva Filho MI, Catalano C, Sokolović I, Vukić-Dugac A, Šutić M, Kurtović M, Bubanović G, Popović-Grle S, Skrinjarić-Cincar S, Vugrek O, Jukić I, Rumora L, Bosnar M, Samaržija M, Bals R, Jakopović M, Försti A, Knežević J. Association of NLRP1 Coding Polymorphism with Lung Function and Serum IL-1β Concentration in Patients Diagnosed with Chronic Obstructive Pulmonary Disease (COPD). Genes (Basel) 2019; 10:783. [PMID: 31601004 PMCID: PMC6826440 DOI: 10.3390/genes10100783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1β-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1β, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients' overall survival was analyzed with the Kaplan-Meier method with the log-rank test. Serum IL-1β concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1β compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220; OR = 0.55, p = 0.03) and NLRP4 (rs12462372; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways.
Collapse
Affiliation(s)
- Petar Ozretić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | | | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Irena Sokolović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Andrea Vukić-Dugac
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Maja Šutić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Matea Kurtović
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Gordana Bubanović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanja Popović-Grle
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanda Skrinjarić-Cincar
- Josip Juraj Strossmayer University of Osijek, School of Medicine, 31 000 Osijek, Croatia.
- Department of Pulmology, Universitiy Hospital Center Osijek, 31 000 Osijek, Croatia.
| | - Oliver Vugrek
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Irena Jukić
- Croatian Institute of Transfusion Medicine, 10 000 Zagreb, Croatia.
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Martina Bosnar
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10 000 Zagreb, Croatia.
| | - Miroslav Samaržija
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University, 66 424 Homburg, Germany.
| | - Marko Jakopović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Jelena Knežević
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| |
Collapse
|
3
|
Möhlendick B, Schmid KW, Siffert W. The GNAS SNP c.393C>T (rs7121) as a marker for disease progression and survival in cancer. Pharmacogenomics 2019; 20:553-562. [PMID: 31124412 DOI: 10.2217/pgs-2018-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G-protein receptor signaling plays a key role in multiple signal transduction pathways. Aberrant activity of the stimulatory Gsα subunit has been frequently associated with cancer. GNAS sequence alterations and conformational changes of Gsα can both enhance or diminish its function and change downstream effects of G-protein receptor signaling. In this review and meta-analysis, we focus on the synonymous SNP rs7121 (FokI, c.393C>T), which is associated with either tumor progression or prolonged survival in cancer patients (overall hazard ratio = 2.256; p < 0.001). We finally point out the relevance of GNAS rs7121 as a promising biomarker and a prediction tool for therapy response and the need of further experiments to implement it into routine clinical diagnostics.
Collapse
Affiliation(s)
- Birte Möhlendick
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Kurt W Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
4
|
Visone R, Bacalini MG, Di Franco S, Ferracin M, Colorito ML, Pagotto S, Laprovitera N, Licastro D, Di Marco M, Scavo E, Bassi C, Saccenti E, Nicotra A, Grzes M, Garagnani P, De Laurenzi V, Valeri N, Mariani-Costantini R, Negrini M, Stassi G, Veronese A. DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics 2019; 11:587-604. [PMID: 31066579 DOI: 10.2217/epi-2018-0153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC.
Collapse
Affiliation(s)
- Rosa Visone
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | | | - Simone Di Franco
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical, Oncological & Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Luisa Colorito
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical, Oncological & Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Sara Pagotto
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Mirco Di Marco
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Emanuela Scavo
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Annalisa Nicotra
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Grzes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
- Department of Molecular Biology, Institute of Genetics & Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paolo Garagnani
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo De Laurenzi
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Renato Mariani-Costantini
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Stassi
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Angelo Veronese
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
- Department of Medicine & Aging Science, G. d'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
5
|
Campo C, Köhler A, Figlioli G, Elisei R, Romei C, Cipollini M, Bambi F, Hemminki K, Gemignani F, Landi S, Försti A. Correction: Inherited variants in genes somatically mutated in thyroid cancer. PLoS One 2018; 13:e0202208. [PMID: 30086163 PMCID: PMC6080776 DOI: 10.1371/journal.pone.0202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|