1
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Warming and temperature variability determine the performance of two invertebrate predators. Sci Rep 2020; 10:6780. [PMID: 32321937 PMCID: PMC7176636 DOI: 10.1038/s41598-020-63679-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
In a warming ocean, temperature variability imposes intensified peak stress, but offers periods of stress release. While field observations on organismic responses to heatwaves are emerging, experimental evidence is rare and almost lacking for shorter-scale environmental variability. For two major invertebrate predators, we simulated sinusoidal temperature variability (±3 °C) around todays' warm summer temperatures and around a future warming scenario (+4 °C) over two months, based on high-resolution 15-year temperature data that allowed implementation of realistic seasonal temperature shifts peaking midpoint. Warming decreased sea stars' (Asterias rubens) energy uptake (Mytilus edulis consumption) and overall growth. Variability around the warming scenario imposed additional stress onto Asterias leading to an earlier collapse in feeding under sinusoidal fluctuations. High-peak temperatures prevented feeding, which was not compensated during phases of stress release (low-temperature peaks). In contrast, increased temperatures increased feeding on Mytilus but not growth rates of the recent invader Hemigrapsus takanoi, irrespective of the scale at which temperature variability was imposed. This study highlights species-specific impacts of warming and identifies temperature variability at the scale of days to weeks/months as important driver of thermal responses. When species' thermal limits are exceeded, temperature variability represents an additional source of stress as seen from future warming scenarios.
Collapse
|
4
|
Aguzzi J, Fanelli E, Ciuffardi T, Schirone A, De Leo FC, Doya C, Kawato M, Miyazaki M, Furushima Y, Costa C, Fujiwara Y. Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore Sagami Bay, Japan. Sci Rep 2018; 8:11163. [PMID: 30042515 PMCID: PMC6057991 DOI: 10.1038/s41598-018-29431-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Benthic community succession patterns at whale falls have been previously established by means of punctual submersible and ROV observations. The contribution of faunal activity rhythms in response to internal tides and photoperiod cues to that community succession dynamism has never been evaluated. Here, we present results from a high-frequency monitoring experiment of an implanted sperm whale carcass in the continental slope (500 m depth) offshore Sagami Bay, Japan. The benthic community succession was monitored at a high frequency in a prolonged fashion (i.e. 2-h intervals for 2.5 months) with a seafloor lander equipped with a time-lapse video camera and an acoustic Doppler profiler to concomitantly study current flow dynamics. We reported here for the first time, to the best of our knowledge, the occurrence of strong 24-h day-night driven behavioral rhythms of the most abundant species (Simenchelys parasitica; Macrocheira kaempferi, and Pterothrissus gissu). Those rhythms were detected in detriment of tidally-controlled ones. Evidence of a diel temporal niche portioning between scavengers and predators avoiding co-occurrence at the carcass, is also provided. The high-frequency photographic and oceanographic data acquisition also helped to precisely discriminate the transition timing between the successional stages previously described for whale falls’ attendant communities.
Collapse
Affiliation(s)
- J Aguzzi
- Instituto de Ciencias del Mar (ICM) of the Consejo Superior de Investigaciones Científicas (CSIC), Paseo Marítimo de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| | - E Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60121, Ancona, Italy
| | - T Ciuffardi
- Marine Environment Research Centre of the Italian National Agency for New Technologies and Sustainable Development (ENEA), P.O. Box 224, 19100, Pozzuolo di Lerici (SP), Italy
| | - A Schirone
- Marine Environment Research Centre of the Italian National Agency for New Technologies and Sustainable Development (ENEA), P.O. Box 224, 19100, Pozzuolo di Lerici (SP), Italy
| | - F C De Leo
- Ocean Networks Canada, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada.,Department of Biology, University of Victoria, PO Box 3080, Victoria, BC, V8W 2Y2, Canada
| | - C Doya
- Instituto de Ciencias del Mar (ICM) of the Consejo Superior de Investigaciones Científicas (CSIC), Paseo Marítimo de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - M Kawato
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - M Miyazaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Y Furushima
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - C Costa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca per l'Ingegneria e le Trasformazioni agroalimentari (CREA-IT), 00016, Monterotondo, Italy
| | - Y Fujiwara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
| |
Collapse
|
5
|
Azra MN, Chen JC, Ikhwanuddin M, Abol-Munafi AB. Thermal tolerance and locomotor activity of blue swimmer crab Portunus pelagicus instar reared at different temperatures. J Therm Biol 2018; 74:234-240. [PMID: 29801633 DOI: 10.1016/j.jtherbio.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
Owing to its potential market value, the blue swimmer crab Portunus pelagicus is of great economic importance. The temperature of water significantly affects the physiological function and production efficiency of these crabs. The aim of the present study was therefore to examine the critical thermal minimum (CTMin), critical thermal maximum (CTMax), acclimation response ratio (ARR), escaping temperature (Tesc), and locomotor behavior of P. pelagicus instars at 20 °C, 24 °C, 28 °C, 32 °C, and 36 °C. The CTMax ranged from 39.05 °C to 44.38 °C, while the CTMin ranged from 13.05 °C to 19.30 °C, and both increased directly with temperature. The ARR ranged from 0.25 to 0.51. The movement of crabs (walking before molting) correlated positively with the acclimation temperature. These results indicate that the parameters evaluated varied with temperature. Furthermore, the high CTMax indicates the potential of this species to adapt to a wide range of temperatures. In addition, the implications of these findings for portunid crabs behavior and distribution in their natural habitat are also discussed.
Collapse
Affiliation(s)
- Mohamad N Azra
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Jiann-Chu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ambok Bolong Abol-Munafi
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|