1
|
Vidyagina EO, Subbotina NM, Belova EN, Kovalitskaya YA, Evdokimov VA, Belyi VA, Kochetov AP, Surin AK, Krutovsky KV, Shestibratov KA. The Potential of Transgenic Hybrid Aspen Plants with a Recombinant Lac Gene from the Fungus Trametes hirsuta to Degrade Trichlorophenol. Genes (Basel) 2025; 16:298. [PMID: 40149450 PMCID: PMC11942117 DOI: 10.3390/genes16030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: Laccases are known to be able to degrade phenolic compounds to simpler components. The main objective of our study was to analyze this property in transgenic aspen plants carrying the laccase gene Lac from Trametes hirsuta which can be potentially used in soil phytoremediation. Methods: We created transgenic aspen plants carrying the laccase gene Lac from Trametes hirsute using the agrobacterial transformation of stem explants with the pBI-Lac vector containing the Lac gene from the white rot fungus T. hirsuta 072 (NCBI GenBank accession number KP027478). Transgenic plants were micropropagated and cultivated in vitro in lines. The degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by plant roots was analyzed by mass-spectrometry with electron ionization using a gas chromatograph. Results: Although plants have their own laccases, those of fungal origin are more effective. All transgenic plants that expressed the recombinant gene degraded 2,4,6-TCP more effectively than non-transformed plants in the control (the degradation efficiency ranged 92 to 98% versus 82% in non-transformed control). Line 47Lac8 demonstrated a 16% higher efficiency than the non-transformed plants in the control. There was also an inverse relationship between the viability of a transgenic line and its level of expression of the recombinant gene. Thus, line 47Lac4 was not viable under native conditions, probably due to lignin synthesis disruptions during the initiation of secondary tissues. This is confirmed by changes in the expression of native genes of lignin biosynthesis. The rest of the transgenic lines did not differ significantly from control in wood growth and biochemistry. The transgenic plant roots were shown to preserve the ability to express the Lac gene ex vitro. Conclusions: Three transgenic lines (47Lac5, 47Lac8, and 47Lac23) with the Lac gene can be recommended for use in soil phytoremediation.
Collapse
Affiliation(s)
- Elena O. Vidyagina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Natalia M. Subbotina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Eugenia N. Belova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
| | - Yulia A. Kovalitskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (Y.A.K.); (V.A.E.)
| | - Vyacheslav A. Evdokimov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (Y.A.K.); (V.A.E.)
| | - Vladimir A. Belyi
- Institute of Chemistry, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, Republic of Komi, Pervomaiskaya Str. 48, 167000 Syktyvkar, Russia;
| | - Alexey P. Kochetov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- Pushchino State Institute of Natural Sciences, Prospekt Nauki 3, 142290 Pushchino, Russia
| | - Alexey K. Surin
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Konstantin A. Shestibratov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia; (E.O.V.); (N.M.S.); (E.N.B.); (A.K.S.)
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| |
Collapse
|
2
|
Gnutikov AA, Nosov NN, Muravenko OV, Amosova AV, Shneyer VS, Loskutov IG, Punina EO, Rodionov AV. Genetic Diversity of the Species of the Genus Deschampsia P.Beauv. (Poaceae) Based on the Analysis of the ITS Region: Polymorphism Proves Distant Hybridization. Int J Mol Sci 2024; 25:11348. [PMID: 39518900 PMCID: PMC11545786 DOI: 10.3390/ijms252111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The species of the genus Deschampsia are difficult for identification, and the genus is difficult for taxonomic treatment. The regions of 35S rRNA genes were studied for the species of the genus Deschampsia of different geographical origin with a method of sequencing by Sanger (ITS1-5.8S rRNA gene-ITS2, 14 species) and with a method of a locus-specific next-generation sequencing (NGS) on the Illumina platform (ITS1-5.8S rRNA, 7 species). All species of Deschampsia formed one clade; the species, referred by some authors on the basis of morphological characters to the species D. cespitosa s.l., entered one subclade. Subantarctic species formed a separate subclade and their ribotypes formed their own subnetwork. Avenella flexuosa, earlier referred to Deschampsia, entered the other clade, though this species contains some ribotypes common with some Deschampsia species. Deschampsia pamirica and related mountain species have their own specific ribotype groups. On the network of the ribotypes, one can see that D. cespitosa from Great Britain forms a network with some species, but D. cespitosa from the USA forms its own network. Ribotype analysis of each sample revealed traces of introgression with Deyeuxia/Calamagrostis in D. cespitosa and with A. flexuosa and probable introgression of Northern and subantarctic species.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia (I.G.L.)
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of RAS, 119991 Moscow, Russia
| | | | - Victoria S. Shneyer
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Igor G. Loskutov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia (I.G.L.)
| | - Elizaveta O. Punina
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| |
Collapse
|
3
|
Amosova AV, Yurkevich OY, Bolsheva NL, Samatadze TE, Zoshchuk SA, Muravenko OV. Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes (Basel) 2022; 13:genes13050762. [PMID: 35627148 PMCID: PMC9141916 DOI: 10.3390/genes13050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12–18 high confident and 7–9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution.
Collapse
|
4
|
González ML, Chiapella JO, Urdampilleta JD. Chromosomal Differentiation of Deschampsia (Poaceae) Based on Four Satellite DNA Families. Front Genet 2021; 12:728664. [PMID: 34621294 PMCID: PMC8490763 DOI: 10.3389/fgene.2021.728664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Diverse families of satellite DNA (satDNA) were detected in heterochromatin regions of Deschampsia. This kind of repetitive DNA consists of tandem repeat sequences forming big arrays in genomes, and can contribute to lineages differentiation. The differentiation between types of satDNA is related to their sequence identity, the size and number of monomers forming the array, and their chromosomal location. In this work, four families of satDNA (D2, D3, D12, D13), previously isolated by genomic analysis, were studied on chromosomal preparations of 12 species of Deschampsia (D. airiformis, D. antarctica, D. cespitosa, D. cordillerarum, D. elongata, D. kingii, D. laxa, D. mendocina, D. parvula, D. patula, D. venustula, and Deschampsia sp) and one of Deyeuxia (D. eminens). Despite the number of satDNA loci showing interspecific variation, the general distribution pattern of each satDNA family is maintained. The four satDNA families are AT-rich and associated with DAPI + heterochromatin regions. D2, D3, and D12 have mainly subterminal distribution, while D13 is distributed in intercalary regions. Such conservation of satDNA patterns suggests a not random distribution in genomes, where the variation between species is mainly associated with the array size and the loci number. The presence of satDNA in all species studied suggests a low genetic differentiation of sequences. On the other hand, the variation of the distribution pattern of satDNA has no clear association with phylogeny. This may be related to high differential amplification and contraction of sequences between lineages, as explained by the library model.
Collapse
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Jorge Oscar Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional Del Comahue), Bariloche, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|
5
|
Kadluczka D, Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae). BMC Genomics 2021; 22:508. [PMID: 34225677 PMCID: PMC8259371 DOI: 10.1186/s12864-021-07853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. Results We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. Conclusions The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07853-2.
Collapse
Affiliation(s)
- Dariusz Kadluczka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|
6
|
González ML, Chiapella JO, Urdampilleta JD. The Antarctic and South American species of Deschampsia: phylogenetic relationships and cytogenetic differentiation. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2020.1860151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biologıa Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cordoba), C.C. 495, Cordoba, Argentina
| | - Jorge O. Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue), Quintral 1250, 8400 Bariloche, Río Negro, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biologıa Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cordoba), C.C. 495, Cordoba, Argentina
| |
Collapse
|
7
|
Chumová Z, Mandáková T, Trávníček P. On the Origin of Tetraploid Vernal Grasses ( Anthoxanthum) in Europe. Genes (Basel) 2021; 12:966. [PMID: 34202779 PMCID: PMC8308110 DOI: 10.3390/genes12070966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.
Collapse
Affiliation(s)
- Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00 Prague, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, CZ-625 00 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
| |
Collapse
|
8
|
Cytogenomics of Deschampsia P. Beauv. (Poaceae) Species Based on Sequence Analyses and FISH Mapping of CON/COM Satellite DNA Families. PLANTS 2021; 10:plants10061105. [PMID: 34070920 PMCID: PMC8229069 DOI: 10.3390/plants10061105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
The genus Deschampsia P. Beauv. (Poaceae) involves a group of widespread polymorphic species, and many of them are highly tolerant to stressful environmental conditions. Genome diversity and chromosomal phylogeny within the genus are still insufficiently studied. Satellite DNAs, including CON/COM families, are the main components of the plant repeatome, which contribute to chromosome organization. For the first time, using PCR-based (Polymerase Chain Reaction) techniques and sequential BLAST (Basic Local Alignment Search Tool) and MSA (Multiple Sequence Alignment) analyses, we identified and classified CON/COM repeats in genomes of eleven Deschampsia accessions and three accessions from related genera. High homology of CON/COM sequences were revealed in the studied species though differences in single-nucleotide alteration profiles detected in homologous CON/COM regions indicated that they tended to diverge independently. The performed chromosome mapping of 45S rDNA, 5S rDNA, and CON/COM repeats in six Deschampsia species demonstrated interspecific variability in localization of these cytogenetic markers and facilitated the identification of different chromosomal rearrangements. Based on the obtained data, the studied Deschampsia species were distinguished into karyological groups, and MSA-based schematic trees were built, which could clarify the relationships within the genus. Our findings can be useful for further genetic and phylogenetic studies.
Collapse
|
9
|
Ishchenko OO, Mel’nyk VM, Parnikoza ІY, Budzhak VV, Panchuk ІІ, Kunakh VA, Volkov RA. Molecular Organization of 5S Ribosomal DNA and Taxonomic Status of Avenella flexuosa (L.) Drejer (Poaceae). CYTOL GENET+ 2021. [DOI: 10.3103/s0095452720060055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Agrawal N, Gupta M, Banga SS, Heslop-Harrison JS(P. Identification of Chromosomes and Chromosome Rearrangements in Crop Brassicas and Raphanus sativus: A Cytogenetic Toolkit Using Synthesized Massive Oligonucleotide Libraries. FRONTIERS IN PLANT SCIENCE 2020; 11:598039. [PMID: 33414797 PMCID: PMC7783396 DOI: 10.3389/fpls.2020.598039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/30/2020] [Indexed: 05/10/2023]
Abstract
Crop brassicas include three diploid [Brassica rapa (AA; 2n = 2x = 16), B. nigra (BB; 2n = 2x = 18), and B. oleracea (CC; 2n = 2x = 20)] and three derived allotetraploid species. It is difficult to distinguish Brassica chromosomes as they are small and morphologically similar. We aimed to develop a genome-sequence based cytogenetic toolkit for reproducible identification of Brassica chromosomes and their structural variations. A bioinformatic pipeline was used to extract repeat-free sequences from the whole genome assembly of B. rapa. Identified sequences were subsequently used to develop four c. 47-mer oligonucleotide libraries comprising 27,100, 11,084, 9,291, and 16,312 oligonucleotides. We selected these oligonucleotides after removing repeats from 18 identified sites (500-1,000 kb) with 1,997-5,420 oligonucleotides localized at each site in B. rapa. For one set of probes, a new method for amplification or immortalization of the library is described. oligonucleotide probes produced specific and reproducible in situ hybridization patterns for all chromosomes belonging to A, B, C, and R (Raphanus sativus) genomes. The probes were able to identify structural changes between the genomes, including translocations, fusions, and deletions. Furthermore, the probes were able to identify a structural translocation between a pak choi and turnip cultivar of B. rapa. Overall, the comparative chromosomal mapping helps understand the role of chromosome structural changes during genome evolution and speciation in the family Brassicaceae. The probes can also be used to identify chromosomes in aneuploids such as addition lines used for gene mapping, and to track transfer of chromosomes in hybridization and breeding programs.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S. Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - JS (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
She CW, Mao Y, Jiang XH, He CP. Comparative molecular cytogenetic characterization of five wild Vigna species (Fabaceae). COMPARATIVE CYTOGENETICS 2020; 14:243-264. [PMID: 32676173 PMCID: PMC7334243 DOI: 10.3897/compcytogen.v14i2.51154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
To extend our knowledge on karyotype variation of the genus Vigna Savi, 1824, the chromosomal organization of rRNA genes and fluorochrome banding patterns of five wild Vigna species were studied. Sequential combined PI (propidium iodide) and DAPI (4',6-diamidino-2-phenylindole) (CPD) staining and fluorescence in situ hybridization (FISH) with 5S and 45S rDNA probes were used to analyze the karyotypes of V. luteola (Jacquin, 1771) Bentham, 1959, V. vexillata (Linnaeus, 1753) A. Richard, 1845, V. minima (Roxburgh, 1832) Ohwi & H. Ohashi, 1969, V. trilobata (Linnaeus, 1753) Verdcourt, 1968, and V. caracalla (Linnaeus, 1753) Verdcourt,1970. For further phylogenetic analysis, genomic in situ hybridization (GISH) with the genomic DNA of V. umbellata (Thunberg, 1794) Ohwi & H.Ohashi, 1969 onto the chromosomes of five wild Vigna species was also performed. Detailed karyotypes were established for the first time using chromosome measurements, fluorochrome bands, and rDNA-FISH signals. All species had chromosome number 2n = 2x = 22, and symmetrical karyotypes that composed of only metacentric or metacentric and submetacentric chromosomes. CPD staining revealed all 45S rDNA sites in the five species analyzed, (peri)centromeric GC-rich heterochromatin in V. luteola, V. trilobata and V. caracalla, interstitial GC-rich and pericentromeric AT-rich heterochromatin in V. caracalla. rDNA-FISH revealed two 5S loci in V. caracalla and one 5S locus in the other four species; one 45S locus in V. luteola and V. caracalla, two 45S loci in V. vexillata and V. trilobata, and five 45S loci in V. minima. The karyotypes of the studied species could be clearly distinguished by the karyotypic parameters, and the patterns of the fluorochrome bands and the rDNA sites, which revealed high interspecific variation among the five species. The V. umbellata genomic DNA probe produced weak signals in all proximal regions of V. luteola and all (peri)centromeric regions of V. trilobata. The combined data demonstrate that distinct genome differentiation has occurred among the five species during evolution. The phylogenetic relationships between the five wild species and related cultivated species of Vigna are discussed based on our present and previous molecular cytogenetic data.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Ying Mao
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Chun-Ping He
- College of Chemistry and Material Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| |
Collapse
|
12
|
Amosova AV, Zoshchuk SA, Rodionov AV, Ghukasyan L, Samatadze TE, Punina EO, Loskutov IG, Yurkevich OY, Muravenko OV. Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae). BMC Genet 2019; 20:92. [PMID: 31801460 PMCID: PMC6894191 DOI: 10.1186/s12863-019-0792-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract Background Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. Results We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. Conclusions The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.
Collapse
Affiliation(s)
- Alexandra V Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander V Rodionov
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Lilit Ghukasyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana E Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elizaveta O Punina
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Igor G Loskutov
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga Yu Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
13
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 DOI: 10.3389/fpls.2019.01503/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/24/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
14
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 PMCID: PMC6879668 DOI: 10.3389/fpls.2019.01503] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/04/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Eva Hřibová,
| |
Collapse
|
15
|
Ishchenko OO, Panchuk ІІ, Andreev ІO, Kunakh VA, Volkov RA. Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|