1
|
Ansari WA, Krishna R, Kashyap SP, Al-Anazi KM, Abul Farah M, Jaiswal DK, Yadav A, Zeyad MT, Verma JP. Relevance of plant growth-promoting bacteria in reducing the severity of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici by altering metabolites and related genes. Front Microbiol 2025; 15:1534761. [PMID: 39902290 PMCID: PMC11788288 DOI: 10.3389/fmicb.2024.1534761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Among the biotic stresses, wilt disease severely affects tomato quality and productivity globally. The causal organism of this disease is Fusarium oxysporum f. sp. lycopersici (Fol), which is very well known and has a significant impact on the productivity of other crops as well. Efforts have been made to investigate the effect of plant growth-promoting bacteria (PGPB) on alleviating tomato wilt disease. Four PGPB strains, such as Pseudomonas aeruginosa BHUPSB01 (T1), Pseudomonas putida BHUPSB04 (T2), Paenibacillus polymyxa BHUPSB16 (T3), and Bacillus cereus IESDJP-V4 (T4), were used as inocula to treat Fol-challenged plants. The results revealed that PGPB treatments T1, T2, T3, and T4 were able to decrease the severity of Fusarium wilt in the tomato plants at different levels. Among the treatments, T3 displayed the strongest protective effect, with the lowest disease frequency, which was 15.25%. There were no significant differences observed in parameters such as fruit yield and relative water content in the PGPB-inoculated plants, although T3 and T4 showed minimal electrolyte leakage. Significant changes in chlorophyll fluorescence were also recorded. A lower level of H2O2 and malondialdehyde (MDA) was observed in the T3 and T4 treatments. In addition, proline accumulation was highest in the T3-treated plants. Antioxidative enzyme activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), significantly increased in the PGPB-treated plants. Furthermore, the highest phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) activity was reported in the T3 and T4 plants, respectively. The PGPB-treated plants showed elevated expression of the PAL, PPO, PR3, PR2, SOD, CAT, and PO genes. This study's results reveal that PGPB strains can be utilized as biocontrol agents (BCAs) to enhance tomato resistance against Fusarium wilt.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- Department of Agriculture, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, India
| | - Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | | | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Akhilesh Yadav
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Zehra A, Aamir M, Dubey MK, Akhtar Ansari W, Meena M, Swapnil P, Upadhyay R, Ajmal Ali M, Ahmed Al-Ghamdi A, Lee J. Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102466. [DOI: 10.1016/j.jksus.2022.102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
3
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
4
|
Gui C, Zhang C, Xiong X, Huang J, Xi J, Gong L, Huang B, Zhang X. Total flavone extract from Ampelopsis megalophylla induces apoptosis in the MCF‑7 cell line. Int J Oncol 2021; 58:409-418. [PMID: 33469684 PMCID: PMC7864147 DOI: 10.3892/ijo.2021.5172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
Ampelopsis megalophylla has been found to demonstrate anticancer activities in human cancer cells; however, the effect of total flavone extract (TFE), commonly used in Traditional Chinese Medicine, remains unclear. Furthermore, there is limited information on its effects on breast cancer cell lines. The present study aimed to investigate the inhibitory effects of TFE in different human cancer cell lines. In addition, the underlying mechanisms and the signaling pathways involved were also investigated by determining tumor cell morphological changes, and differences in the cell cycle, apoptosis, mitochondrial transmembrane potential, and related protein expression levels in a breast cancer cell line. It was found that TFE inhibited proliferation in seven cancer cell lines (HeLa, A549, MCF-7, HepG2, A2780, SW620 and MDA-MB-231 and demonstrated a strong inhibitory effect on MCF-7 cell proliferation. Cell morphological changes were also observed and arrested at the G2/M phase following treatment with TFE at different concentrations. In addition, TFE disrupted the mitochondrial membrane potential and upregulated the expression level of apoptotic proteins, including caspase-3, -8 and -9, the Bax/Bcl-2 ratio, and Apaf-1 in time-dependent manner. These results indicated that TFE induced apoptosis of the MCF-7 cells via a mitochondrial-mediated apoptotic pathway. In conclusion, TFE is potentially effective in treating breast cancer.
Collapse
Affiliation(s)
- Chun Gui
- The Medicinal Plant Garden, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Chao Zhang
- The Medicinal Plant Garden, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaomei Xiong
- The Medicinal Plant Garden, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jing Huang
- The Medicinal Plant Garden, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Juan Xi
- Department of Clinical Biochemistry, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ling Gong
- Department of Pharmacognosy, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Bisheng Huang
- Department of Pharmacognosy, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiuqiao Zhang
- Department of Pharmacognosy, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
5
|
Gomes EV, Ulhoa CJ, Cardoza RE, Silva RN, Gutiérrez S. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:880. [PMID: 28611802 PMCID: PMC5446994 DOI: 10.3389/fpls.2017.00880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/10/2017] [Indexed: 05/26/2023]
Abstract
Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.
Collapse
Affiliation(s)
- Eriston V. Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Cirano J. Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Federal University of GoiásGoiânia, Brazil
| | - Rosa E. Cardoza
- Area of Microbiology, University School of Agricultural Engineers, University of LeónPonferrada, Spain
| | - Roberto N. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Santiago Gutiérrez
- Area of Microbiology, University School of Agricultural Engineers, University of LeónPonferrada, Spain
| |
Collapse
|