1
|
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine Extends the Telomere Length of the Cardiac Differentiated CD117 +- Expressing Stem Cells. Tissue Cell 2020; 67:101429. [PMID: 32861877 DOI: 10.1016/j.tice.2020.101429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy has emerged as an attractive method for regenerating and repairing the lost heart organ. On other hand, poor survival and maintenance of the cells transferred into the damaged heart tissue are broadly accepted as serious barriers to enhance the efficacy of the regenerative therapy. For this reason, external factors, such as antioxidants are used as a favorite strategy by the investigators to improve the cell survival and retention properties. Therefore, the present study was conducted to investigate the In -vitro effect of L-carnitine (LC) on the telomere length and human telomerase reverse transcriptase (hTERT) gene expression in the cardiac differentiated bone marrow resident CD117+ stem cells through Wnt3/β-catenin and ERK1/2 pathways. To do this, bone marrow resident CD117+ stem cells were enriched by the magnetic-activated cell sorting (MACS) method, and were differentiated to the cardiac cells in the absence (-LC) and presence of the LC (+LC). Also, characterization of the enriched c-kit+ cells was performed using the flow cytometry and immunocytochemistry. At the end of the treatment period, the cells were subjected to the real-time PCR technique along with western blotting assay for measurement of the telomere length and assessment of mRNA and protein, respectively. The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the hTERT gene expression in the cardiac differentiated CD117+ stem cells. In addition, a significant increase was observed in the mRNA and protein expression of Wnt3, β-catenin and ERK1/2 as key components of these pathways. It can be concluded that the LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the cardiac differentiated bone marrow resident CD117+ stem cells via Wnt3/β-catenin and ERK1/2 signaling pathway components.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
3
|
Mount S, Kanda P, Parent S, Khan S, Michie C, Davila L, Chan V, Davies RA, Haddad H, Courtman D, Stewart DJ, Davis DR. Physiologic expansion of human heart-derived cells enhances therapeutic repair of injured myocardium. Stem Cell Res Ther 2019; 10:316. [PMID: 31685023 PMCID: PMC6829847 DOI: 10.1186/s13287-019-1418-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
Background Serum-free xenogen-free defined media and continuous controlled physiological cell culture conditions have been developed for stem cell therapeutics, but the effect of these conditions on the relative potency of the cell product is unknown. As such, we conducted a head-to-head comparison of cell culture conditions on human heart explant-derived cells using established in vitro measures of cell potency and in vivo functional repair. Methods Heart explant-derived cells cultured from human atrial or ventricular biopsies within a serum-free xenogen-free media and a continuous physiological culture environment were compared to cells cultured under traditional (high serum) cell culture conditions in a standard clean room facility. Results Transitioning from traditional high serum cell culture conditions to serum-free xenogen-free conditions had no effect on cell culture yields but provided a smaller, more homogenous, cell product with only minor antigenic changes. Culture within continuous physiologic conditions markedly boosted cell proliferation while increasing the expression of stem cell-related antigens and ability of cells to stimulate angiogenesis. Intramyocardial injection of physiologic cultured cells into immunodeficient mice 1 week after coronary ligation translated into improved cardiac function and reduced scar burden which was attributable to increased production of pro-healing cytokines, extracellular vesicles, and microRNAs. Conclusions Continuous physiological cell culture increased cell growth, paracrine output, and treatment outcomes to provide the greatest functional benefit after experimental myocardial infarction.
Collapse
Affiliation(s)
- Seth Mount
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada
| | - Pushpinder Kanda
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada
| | - Sandrine Parent
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada
| | - Saad Khan
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Connor Michie
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada
| | - Liliana Davila
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Vincent Chan
- University of Ottawa Heart Institute, Division of Cardiac Surgery, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Ross A Davies
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada
| | | | - David Courtman
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Duncan J Stewart
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, K1H8L6, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, H3214 40 Ruskin Ave, Ottawa, ON, K1Y4W7, Canada. .,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, K1H8L6, Canada.
| |
Collapse
|
4
|
Villanueva M, Michie C, Parent S, Kanaan GN, Rafatian G, Kanda P, Ye B, Liang W, Harper ME, Davis DR. Glyoxalase 1 Prevents Chronic Hyperglycemia Induced Heart-Explant Derived Cell Dysfunction. Theranostics 2019; 9:5720-5730. [PMID: 31534514 PMCID: PMC6735395 DOI: 10.7150/thno.36639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
Decades of work have shown that diabetes increases the risk of heart disease and worsens clinical outcomes after myocardial infarction. Because diabetes is an absolute contraindication to heart transplant, cell therapy is increasingly being explored as a means of improving heart function for these patients with very few other options. Given that hyperglycemia promotes the generation of toxic metabolites, the influence of the key detoxification enzyme glyoxalase 1 (Glo1) on chronic hyperglycemia induced heart explant-derived cell (EDC) dysfunction was investigated. Methods: EDCs were cultured from wild type C57Bl/6 or Glo1 over-expressing transgenic mice 2 months after treatment with the pancreatic beta cell toxin streptozotocin or vehicle. The effects of Glo1 overexpression was evaluated using in vitro and in vivo models of myocardial ischemia. Results: Chronic hyperglycemia reduced overall culture yields and increased the reactive dicarbonyl cell burden within EDCs. These intrinsic cell changes reduced the angiogenic potential and production of pro-healing exosomes while promoting senescence and slowing proliferation. Compared to intra-myocardial injection of normoglycemic cells, chronic hyperglycemia attenuated cell-mediated improvements in myocardial function and reduced the ability of transplanted cells to promote new blood vessel and cardiomyocyte growth. In contrast, Glo1 overexpression decreased oxidative damage while restoring both cell culture yields and EDC-mediated repair of ischemic myocardium. The latter was associated with enhanced production of pro-healing extracellular vesicles by Glo1 cells without altering the pro-healing microRNA cargo within. Conclusions: Chronic hyperglycemia decreases the regenerative performance of EDCs. Overexpression of Glo1 reduces dicarbonyl stress and prevents chronic hyperglycemia-induced dysfunction by rejuvenating the production of pro-healing extracellular vesicles.
Collapse
|
5
|
Leitolis A, Suss PH, Roderjan JG, Angulski ABB, da Costa FDA, Stimamiglio MA, Correa A. Human Heart Explant-Derived Extracellular Vesicles: Characterization and Effects on the In Vitro Recellularization of Decellularized Heart Valves. Int J Mol Sci 2019; 20:ijms20061279. [PMID: 30875722 PMCID: PMC6471048 DOI: 10.3390/ijms20061279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are particles released from different cell types and represent key components of paracrine secretion. Accumulating evidence supports the beneficial effects of EVs for tissue regeneration. In this study, discarded human heart tissues were used to isolate human heart-derived extracellular vesicles (hH-EVs). We used nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) to physically characterize hH-EVs and mass spectrometry (MS) to profile the protein content in these particles. The MS analysis identified a total of 1248 proteins. Gene ontology (GO) enrichment analysis in hH-EVs revealed the proteins involved in processes, such as the regulation of cell death and response to wounding. The potential of hH-EVs to induce proliferation, adhesion, angiogenesis and wound healing was investigated in vitro. Our findings demonstrate that hH-EVs have the potential to induce proliferation and angiogenesis in endothelial cells, improve wound healing and reduce mesenchymal stem-cell adhesion. Last, we showed that hH-EVs were able to significantly promote mesenchymal stem-cell recellularization of decellularized porcine heart valve leaflets. Altogether our data confirmed that hH-EVs modulate cellular processes, shedding light on the potential of these particles for tissue regeneration and for scaffold recellularization.
Collapse
Affiliation(s)
- Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | - Paula Hansen Suss
- Pontifical Catholic University of Paraná-PUCPR, Curitiba 80215-901, Brazil.
| | | | - Addeli Bez Batti Angulski
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | | | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| |
Collapse
|
6
|
Zhang F, Guo F. Effect of transplantation of cardiac stem cells overexpressing integrin-linked kinase on cardiac function of rats with acute myocardial infarction. Exp Ther Med 2018; 16:746-750. [PMID: 30116329 PMCID: PMC6090253 DOI: 10.3892/etm.2018.6198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
In the present study, we aimed to investigate the effect of transplantation of cardiac stem cells (CSCs) overexpressing integrin-linked kinase (ILK) on cardiac function of rats with acute myocardial infarction (MI). A total of 60 rats were randomly divided into normal saline (NS) group (n=20), green fluorescent protein (GFP)-CSC group (n=20) and ILK-CSC group (n=20). In the ILK-CSC group, CSCs in rats were transfected with GFP adenovirus vector overexpressing ILK. The rat model of MI was established. The cardiac function 4 weeks after transplantation was detected via echocardiography, and the exhaustive swimming experiment was performed to observe the exercise load capacity. Moreover, Ki-67 and P-H3 proteins in myocardial tissues of rats were detected via immunohistochemistry, and the expression of GFP was observed under a fluorescence microscope. Cells in the GFP-CSC group were transfected with the empty GFP adenovirus, while those in NS group were not transfected, and other treatments in these two groups were the same as those in the ILK-CSC group. Four weeks after transplantation, left ventricular end-systolic diameter (LVESD) and left ventricular end-diastolic diameter (LVEDD) of rats in the ILK-CSC group were smaller than those in the GFP-CSC group, but left ventricular ejection fraction (LVEF) (69.88±5.61 mm) was higher than that in the GFP-CSC group (P<0.05). The exercise time in the ILK-CSC group (12.69±0.58 min) was longer than that in the GFP-CSC and NS groups (P<0.05). The expression levels of Ki-67 and P-H3 proteins in myocardial cells of rats in the ILK-CSC group were higher than those in the GFP-CSC and NS groups (P<0.05). The number of transplanted cells retained around the infarct region in the ILK-CSC group 3 days after transplantation was obviously larger than that in the GFP-CSC group (P<0.001). Intramyocardial injection of CSCs overexpressing ILK immediately after the establishment of rat model of MI can promote myocardial cell proliferation, improve cardiac function and increase exercise capacity of rats.
Collapse
Affiliation(s)
- Fengli Zhang
- Department of Cardiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Fengyan Guo
- Department of Cardiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|