1
|
Bělonožníková K, Černý M, Hýsková V, Synková H, Valcke R, Hodek O, Křížek T, Kavan D, Vaňková R, Dobrev P, Haisel D, Ryšlavá H. Casein as protein and hydrolysate: Biostimulant or nitrogen source for Nicotiana tabacum plants grown in vitro? PHYSIOLOGIA PLANTARUM 2023; 175:e13973. [PMID: 37402155 DOI: 10.1111/ppl.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ondřej Hodek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
2
|
Behling AH, Winter DJ, Ganley ARD, Cox MP. Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression. J Evol Biol 2022; 35:1126-1137. [PMID: 35830478 PMCID: PMC9546207 DOI: 10.1111/jeb.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near‐instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome‐wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans‐acting cross‐talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high‐level expression outcomes, regardless of the particular species or kingdom.
Collapse
Affiliation(s)
- Anna H Behling
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Galić V, Mlinarić S, Marelja M, Zdunić Z, Brkić A, Mazur M, Begović L, Šimić D. Contrasting Water Withholding Responses of Young Maize Plants Reveal Link Between Lipid Peroxidation and Osmotic Regulation Corroborated by Genetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:804630. [PMID: 35873985 PMCID: PMC9296821 DOI: 10.3389/fpls.2022.804630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Linking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation (TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and current water content (CWC). Proline accumulation was found to be influenced by H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism. Most of the associations detected were for proline (29.4%) and TBARS (44.1%). Gene ontology (GO) enrichment analysis showed significant enrichment in regulation of integral membrane parts and peroxisomes along with regulation of transcription and polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes are needed to elucidate the role of this signaling mechanism in regulation of response to water deficit.
Collapse
Affiliation(s)
- Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Marelja
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zvonimir Zdunić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Andrija Brkić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Maja Mazur
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Šimić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| |
Collapse
|
4
|
Joachimiak AJ, Libik-Konieczny M, Wójtowicz T, Sliwinska E, Grabowska-Joachimiak A. Physiological aspects of sex differences and Haldane's rule in Rumex hastatulus. Sci Rep 2022; 12:11145. [PMID: 35778518 PMCID: PMC9249882 DOI: 10.1038/s41598-022-15219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Haldane's rule (HR, impairment of fertility and/or viability of interracial hybrids) seems to be one of few generalizations in evolutionary biology. The validity of HR has been confirmed in animals, and more recently in some dioecious plants (Silene and Rumex). Dioecious Rumex hastatulus has two races differing in the sex chromosome system: Texas (T) and North Carolina (NC), and T × NC males showed both reduced pollen fertility and rarity-two classical symptoms of Haldane's rule (HR). The reduced fertility of these plants has a simple mechanistic explanation, but the reason for their rarity was not elucidated. Here, we measured selected physiological parameters related to the antioxidant defense system in parental races and reciprocal hybrids of R. hastatulus. We showed that the X-autosome configurations, as well as asymmetries associated with Y chromosomes and cytoplasm, could modulate this system in hybrids. The levels and quantitative patterns of the measured parameters distinguish the T × NC hybrid from the other analyzed forms. Our observations suggest that the rarity of T × NC males is caused postzygotically and most likely related to the higher level of oxidative stress induced by the chromosomal incompatibilities. It is the first report on the physiological aspects of HR in plants.
Collapse
Affiliation(s)
- Andrzej J Joachimiak
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Marta Libik-Konieczny
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Tomasz Wójtowicz
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140, Kraków, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Aleksandra Grabowska-Joachimiak
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140, Kraków, Poland.
| |
Collapse
|
5
|
Lee JS, Jahani M, Huang K, Mandel JR, Marek LF, Burke JM, Langlade NB, Owens GL, Rieseberg LH. Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower. J Adv Res 2022; 42:83-98. [PMID: 36513422 PMCID: PMC9788961 DOI: 10.1016/j.jare.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer R. Mandel
- Department of Biological Sciences and Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Laura F. Marek
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - John M. Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens 30602, Georgia
| | | | - Gregory L. Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada,Corresponding author.
| |
Collapse
|
6
|
Yan S, Chong P, Zhao M, Liu H. Physiological response and proteomics analysis of Reaumuria soongorica under salt stress. Sci Rep 2022; 12:2539. [PMID: 35169191 PMCID: PMC8847573 DOI: 10.1038/s41598-022-06502-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 01/31/2023] Open
Abstract
Soil salinity can severely restrict plant growth. Yet Reaumuria soongorica can tolerate salinity well. However, large-scale proteomic studies of this plant’s response to salinity have yet to reported. Here, R. soongorica seedlings (4 months old) were used in an experiment where NaCl solutions simulated levels of soil salinity stress. The fresh weight, root/shoot ratio, leaf relative conductivity, proline content, and total leaf area of R. soongorica under CK (0 mM NaCl), low (200 mM NaCl), and high (500 mM NaCl) salt stress were determined. The results showed that the proline content of leaves was positively correlated with salt concentration. With greater salinity, the plant fresh weight, root/shoot ratio, and total leaf area increased initially but then decreased, and vice-versa for the relative electrical conductivity of leaves. Using iTRAQ proteomic sequencing, 47 177 136 differentially expressed proteins (DEPs) were identified in low-salt versus CK, high-salt versus control, and high-salt versus low-salt comparisons, respectively. A total of 72 DEPs were further screened from the comparison groupings, of which 34 DEPs increased and 38 DEPs decreased in abundance. These DEPs are mainly involved in translation, ribosomal structure, and biogenesis. Finally, 21 key DEPs (SCORE value ≥ 60 points) were identified as potential targets for salt tolerance of R. soongolica. By comparing the protein structure of treated versus CK leaves under salt stress, we revealed the key candidate genes underpinning R. soongolica’s salt tolerance ability. This works provides fresh insight into its physiological adaptation strategy and molecular regulatory network, and a molecular basis for enhancing its breeding, under salt stress conditions.
Collapse
Affiliation(s)
- Shipeng Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ming Zhao
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734000, China
| | - Hongmei Liu
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734000, China
| |
Collapse
|
7
|
Li H, Yang M, Zhao C, Wang Y, Zhang R. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC PLANT BIOLOGY 2021; 21:513. [PMID: 34736392 PMCID: PMC8567644 DOI: 10.1186/s12870-021-03295-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. RESULTS The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. CONCLUSIONS Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.
Collapse
Affiliation(s)
- Hongjie Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Leite JT, do Amaral Junior AT, Kamphorst SH, de Lima VJ, dos Santos Junior DR, Schmitt KFM, de Souza YP, Santos TDO, Bispo RB, Mafra GS, Campostrini E, Rodrigues WP. Water Use Efficiency in Popcorn ( Zea mays L. var. everta): Which Physiological Traits Would Be Useful for Breeding? PLANTS (BASEL, SWITZERLAND) 2021; 10:1450. [PMID: 34371657 PMCID: PMC8309410 DOI: 10.3390/plants10071450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
To ensure genetic gains in popcorn breeding programs carried out under drought conditions knowledge about the response of morphophysiological traits of plants to water stress for the selection of key traits is required. Therefore, the objective was to evaluate popcorn inbred lines with agronomically efficient (P2 and P3) and inefficient (L61 and L63) water use and two hybrids (P2xL61 and P3xL63) derived from these contrasting parents, cultivated under two water regimes (WW watered-WW; and water-stressed-WS) in a greenhouse, replicated five times, where each experimental unit consisted of one plant in a PVC tube. Irrigation was applied until stage V6 and suspended thereafter. Individual and combined analyses of variance were performed and the genotypic correlations and relative heteroses estimated. The water use efficient inbred lines were superior in root length (RL), root dry weight (RDW), and net CO2 assimilation rate (A), which were the characteristics that differentiated the studied genotypes most clearly. High heterosis estimates were observed for RL, SDW, leaf width (LW), leaf midrib length (LL), and agronomic water use efficiency (AWUE). The existence of a synergistic association between root angle and length for the characteristics A, stomatal conductance (gs), and chlorophyll concentration (SPAD index) proved most important for the identification and phenotyping of superior genotypes. Based on the study of these characteristics, the higher AWUE of the previously selected inbred lines could be explained. The results reinforced the importance of root physiological and morphological traits to explain AWUE and the possibility of advances by exploiting heterosis, given the morphophysiological superiority of hybrids in relation to parents.
Collapse
Affiliation(s)
- Jhean Torres Leite
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Antonio Teixeira do Amaral Junior
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Samuel Henrique Kamphorst
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Valter Jário de Lima
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Divino Rosa dos Santos Junior
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Kátia Fabiane Mereiros Schmitt
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Yure Pequeno de Souza
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Talles de Oliveira Santos
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Rosimeire Barboza Bispo
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Gabrielle Sousa Mafra
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Eliemar Campostrini
- Center of Agricultural Science and Technology, Laboratory of Plant Breeding, Darcy Ribeiro State University of Northern Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (J.T.L.); (V.J.d.L.); (D.R.d.S.J.); (K.F.M.S.); (Y.P.d.S.); (T.d.O.S.); (R.B.B.); (G.S.M.); (E.C.)
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Av. Brejo do Pinto, S/N, Estreito 65975-000, MA, Brazil;
| |
Collapse
|
9
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
10
|
Münzbergová Z, Kosová V, Schnáblová R, Rokaya M, Synková H, Haisel D, Wilhelmová N, Dostálek T. Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:400. [PMID: 32318088 PMCID: PMC7154175 DOI: 10.3389/fpls.2020.00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Kosová
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Renáta Schnáblová
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Maan Rokaya
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Nada Wilhelmová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Dostálek
- Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Zemanová V, Popov M, Pavlíková D, Kotrba P, Hnilička F, Česká J, Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC PLANT BIOLOGY 2020; 20:130. [PMID: 32228515 PMCID: PMC7106808 DOI: 10.1186/s12870-020-2325-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/28/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Arsenic toxicity induces a range of metabolic responses in plants, including DNA methylation. The focus of this paper was on the relationship between As-induced stress and plant senescence in the hyperaccumulator Pteris cretica var. Albo-lineata (Pc-Al). We assume difference in physiological parameters and level of DNA methylation in young and old fronds as symptoms of As toxicity. RESULTS The As accumulation of Pc-Al fronds, grown in pots of haplic chernozem contaminated with 100 mg As kg- 1 for 122 days, decreased with age. Content of As was higher in young than old fronds for variants with 100 mg As kg- 1 (2800 and 2000 mg As kg- 1 dry matter, respectively). The highest As content was determined in old fronds of Pc-Al grown in pots with 250 mg As kg- 1. The increase with age was confirmed for determined nutrients - Cu, Mg, Mn, S and Zn. A significant elevation of all analysed nutrients was showed in old fronds. Arsenic accumulation affected DNA methylation status in fronds, but content of 5-methylcytosine (5mC) decreased only in old fronds of Pc-Al (from 25 to 12%). Determined photosynthetic processes showed a decrease of fluorescence, photosynthetic rate and chlorophylls of As treatments in young and old fronds. Water potential was decreased by As in both fronds. Thinning of the sclerenchymatous inner cortex and a reduction in average tracheid metaxylem in the vascular cylinder was showed in roots of As treatment. Irrespective to fronds age, physiological parameters positively correlated with a 5mC while negatively with direct As toxicity. Opposite results were found for contents of Cu, Mg, Mn, S and Zn. CONCLUSIONS The results of this paper point to changes in the metabolism of the hyperaccumulator plant Pc-Al, upon low and high exposure to As contamination. The significant impact of As on DNA methylation was found in old fronds. Irrespective to fronds age, significant correlations were confirmed for 5mC and As toxicity. Our analysis of the very low water potential values and lignification of cell walls in roots showed that transports of assimilated metabolites and water between roots and fronds were reduced. As was showed by our results, epigenetic changes could affect studied parameters of the As hyperaccumulator plant Pc-Al, especially in old fronds.
Collapse
Affiliation(s)
- Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Jana Česká
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
12
|
Galic V, Mazur M, Brkic A, Brkic J, Jambrovic A, Zdunic Z, Simic D. Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings. PLANTS (BASEL, SWITZERLAND) 2020; 9:E275. [PMID: 32093233 PMCID: PMC7076456 DOI: 10.3390/plants9020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The seedling stage has received little attention in maize breeding to identify genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight (expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at seedling stage. METHODS 109 genotyped-by-sequencing (GBS) elite maize inbreds were phenotyped for HKW and planted in controlled conditions (16/8 day/night, 25 °C, 50% RH, 200 µMol/m2/s) in trays filled with soil. Plants in control (C) were watered every two days, while watering was stopped for 10 days in water withholding (WW). Fresh weight (FW), dry weight (DW), and dry matter content (DMC) were measured. RESULTS Adding HKW as a covariate increased the power of detection of associations in FW and DW by 44% and increased genomic prediction accuracy in C and decreased in WW. CONCLUSIONS Seed weight was effectively incorporated into association studies for biomass traits in maize seedlings, whereas the incorporation into genomic predictions, particularly in water-stressed plants, was not worthwhile.
Collapse
Affiliation(s)
- Vlatko Galic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
| | - Maja Mazur
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
| | - Andrija Brkic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
| | - Josip Brkic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
| | - Antun Jambrovic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR10000 Zagreb, Croatia
| | - Zvonimir Zdunic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR10000 Zagreb, Croatia
| | - Domagoj Simic
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR10000 Zagreb, Croatia
| |
Collapse
|
13
|
Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS One 2018; 13:e0197870. [PMID: 29795656 PMCID: PMC5967837 DOI: 10.1371/journal.pone.0197870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023] Open
Abstract
The contents of endogenous brassinosteroids (BRs) together with various aspects of plant morphology, water management, photosynthesis and protection against cell damage were assessed in two maize genotypes that differed in their drought sensitivity. The presence of 28-norbrassinolide in rather high quantities (1-2 pg mg-1 fresh mass) in the leaves of monocot plants is reported for the first time. The intraspecific variability in the presence/content of the individual BRs in drought-stressed plants is also described for the first time. The drought-resistant genotype was characterised by a significantly higher content of total endogenous BRs (particularly typhasterol and 28-norbrassinolide) compared with the drought-sensitive genotype. On the other hand, the drought-sensitive genotype showed higher levels of 28-norcastasterone. Both genotypes also differed in the drought-induced reduction/elevation of the levels of 28-norbrassinolide, 28-norcastasterone, 28-homocastasterone and 28-homodolichosterone. The differences observed between both genotypes in the endogenous BR content are probably correlated with their different degrees of drought sensitivity, which was demonstrated at various levels of plant morphology, physiology and biochemistry.
Collapse
|
14
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
15
|
Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design. PLoS One 2017; 12:e0189054. [PMID: 29240818 PMCID: PMC5730204 DOI: 10.1371/journal.pone.0189054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023] Open
Abstract
The use of heterosis has considerably increased the productivity of many crops; however, the biological mechanism underpinning the technique remains elusive. The North Carolina design III (NCIII) and the triple test cross (TTC) are powerful and popular genetic mating design that can be used to decipher the genetic basis of heterosis. However, when using the NCIII design with the present quantitative trait locus (QTL) mapping method, if epistasis exists, the estimated additive or dominant effects are confounded with epistatic effects. Here, we propose a two-step approach to dissect all genetic effects of QTL and digenic interactions on a whole genome without sacrificing statistical power based on an augmented TTC (aTTC) design. Because the aTTC design has more transformation combinations than do the NCIII and TTC designs, it greatly enriches the QTL mapping for studying heterosis. When the basic population comprises recombinant inbred lines (RIL), we can use the same materials in the NCIII design for aTTC-design QTL mapping with transformation combination Z1, Z2, and Z4 to obtain genetic effect of QTL and digenic interactions. Compared with RIL-based TTC design, RIL-based aTTC design saves time, money, and labor for basic population crossed with F1. Several Monte Carlo simulation studies were carried out to confirm the proposed approach; the present genetic parameters could be identified with high statistical power, precision, and calculation speed, even at small sample size or low heritability. Additionally, two elite rice hybrid datasets for nine agronomic traits were estimated for real data analysis. We dissected the genetic effects and calculated the dominance degree of each QTL and digenic interaction. Real mapping results suggested that the dominance degree in Z2 that mainly characterize heterosis showed overdominance and dominance for QTL and digenic interactions. Dominance and overdominance were the major genetic foundations of heterosis in rice.
Collapse
|
16
|
Zhang N, Zhang L, Zhao L, Ren Y, Cui D, Chen J, Wang Y, Yu P, Chen F. iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat. Sci Rep 2017; 7:7524. [PMID: 28790462 PMCID: PMC5548720 DOI: 10.1038/s41598-017-08069-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
By comparing the differentially accumulated proteins from the derivatives (UC 1110 × PI 610750) in the F10 recombinant inbred line population which differed in cold-tolerance, altogether 223 proteins with significantly altered abundance were identified. The comparison of 10 cold-sensitive descendant lines with 10 cold-tolerant descendant lines identified 140 proteins that showed decreased protein abundance, such as the components of the photosynthesis apparatus and cell-wall metabolism. The identified proteins were classified into the following main groups: protein metabolism, stress/defense, carbohydrate metabolism, lipid metabolism, sulfur metabolism, nitrogen metabolism, RNA metabolism, energy production, cell-wall metabolism, membrane and transportation, and signal transduction. Results of quantitative real-time PCR of 20 differentially accumulated proteins indicated that the transcriptional expression patterns of 10 genes were consistent with their protein expression models. Virus-induced gene silencing of Hsp90, BBI, and REP14 genes indicated that virus-silenced plants subjected to cold stress had more severe drooping and wilting, an increased rate of relative electrolyte leakage, and reduced relative water content compared to viral control plants. Furthermore, ultrastructural changes of virus-silenced plants were destroyed more severely than those of viral control plants. These results indicate that Hsp90, BBI, and REP14 potentially play vital roles in conferring cold tolerance in bread wheat.
Collapse
Affiliation(s)
- Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingran Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianhui Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyan Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengbo Yu
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|